计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200220-10.doi: 10.11896/jsjkx.241200220
柏杨, 陈晋音, 郑海斌, 郑雅羽
BAI Yang, CHEN Jinyin, ZHENG Haibin, ZHENG Yayu
摘要: 图垂直联邦学习是一种结合图数据和垂直联邦学习的分布式机器学习方法,广泛应用于金融服务、医疗健康和社交网络等领域。该方法在保护隐私的同时,利用数据多样性显著提升模型性能。然而,研究表明图垂直联邦学习容易受到对抗攻击的威胁。现有的针对图神经网络的对抗攻击方法,如梯度最大化攻击、简化梯度攻击等方法在图垂直联邦框架中实施时仍然面临攻击成功率低、隐蔽性差、在防御情况下无法实施等问题。为应对这些挑战,提出了一种面向图垂直联邦的对抗攻击方法(Node and Feature Adversarial Attack,NFAttack),该方法分别设计了节点攻击策略与特征攻击策略,从不同维度实施高效攻击。首先,节点攻击策略基于度中心性指标评估节点的重要性,通过连接一定数量的虚假节点以形成虚假边,从而干扰高中心性节点。其次,特征攻击策略在节点特征中注入由随机噪声与梯度噪声构成的混合噪声,进而扰乱分类结果。最后,在6个数据集和3种图神经网络模型上进行实验,结果表明NFAttack的平均攻击成功率达到80%,比其他算法提高了约30%。此外,即使在多种联邦学习防御机制下,NFAttack仍展现出较强的攻击效果。
中图分类号:
| [1]ZHANG C,XIE Y,BAI H,et al.A survey on federated learning[J].Knowledge-Based Systems,2021,216:106775. [2]LIU P,XU X,WANG W.Threats,attacks and defenses to federated learning:issues,taxonomy and perspectives[J].Cybersecurity,2022,5(1):4. [3]HENRIQUE B M,SOBREIRO V A,KIMURA H.Literaturereview:Machine learning techniques applied to financial market prediction[J].Expert Systems with Applications,2019,124:226-251. [4]KONONENKO I.Machine learning for medical diagnosis:history,state of the art and perspective[J].Artificial Intelligence in Medicine,2001,23(1):89-109. [5]CUMMINGS D,NASSAR M.Structured citation trend predic-tion using graph neural networks[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2020:3897-3901. [6]GAO C,WANG X,HE X,et al.Graph neural networks for recommender system[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining.2022:1623-1625. [7]ZHANG X M,LIANG L,LIU L,et al.Graph neural networks and their current applications in bioinformatics[J].Frontiers in Genetics,2021,12:690049. [8]LUAN H,TSAI C C.A review of using machine learning approaches for precision education[J].Educational Technology & Society,2021,24(1):250-266. [9]YU B,MBO W,LV Y,et al.A survey on federated learning in data mining[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2022,12(1):1-20. [10]HARD A,RAO K,MATHEWS R,et al.Federated learn-ing for mo-bile keyboard prediction[J].arXiv:1811.03604,2018. [11]YANG Q,LIU Y,CHEN T,et al.Federated machine learning:Concept and applications[J].ACM Transactions on Intelligent Systems and Technology(TIST),2019,10(2):1-19. [12]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24. [13]ZHAO T,JIN W,LIU Y,et al.Graph data augmentation for graph machine learning:A survey[J].arXiv:2202.08871,2022. [14]KIPF T N,WELLING M.Semi-supervised classification withgra-ph convolutional networks[J].arXiv:1609.02907,2016. [15]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[J].Advances in Neural Information Processing Systems,2017,30:1-11. [16]VELIČKOVIC′ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,,2017. [17]LI Y,CHENG M,HSIEH C J,et al.A review of adversarial attack and defense for classification methods[J].The American Statistician,2022,76(4):329-345. [18]ZHANG T,LIAO B,YU J,et al.Benchmarking and Analysis for Graph Neural Network Node Classification Task[J].Computer Science,2024,51(4):132-150. [19]DAI H,LI H,TIAN T,et al.Adversarial attack on graph structured data[C]//International Conference on Machine Learning.PMLR,2018:1115-1124. [20]LI J,XIE T,CHEN L,et al.Adversarial attack on large scale graph[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(1):82-95. [21]ZÜGNER D,AKBARNEJAD A,GÜNNEMANN S.Adversarial attacks on neural networks for graph data[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:2847-2856. [22]SUN Y,WANG S,TANG X,et al.Node injection attacks on graphs via reinforcement learning[J].arXiv:1909.06543,2019. [23]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [24]DWORK C,MCSHERRY F,NISSIM K,et al.Calibrating noise to sensitivity in private data analysis[C]//Proceedings of Theoryof Cryptography Conference.2006:265-284. [25]ABADI M,CHU A,GOODFELLOW I,et al.Deep learning with differential privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.2016:308-318. [26]WANG C,LIANG J,HUANG M,et al.Hybrid differentially private federated learning on vertically partitioned data[J].ar-Xiv:2009.02763,2020. [27]YANG Z,COHEN W,SALAKHUDINOV R.Revisiting semi-supervised learning with graph embeddings[C]//International Conference on Machine Learning.PMLR,2016:40-48. [28]SHCHUR O,MUMME M,BOJCHEVSKI A,et al.Pitfalls of graph neural network evaluation[J].arXiv:1811.05868,2018. [29]SUN M,TANG J,LI H,et al.Data poisoning attack against unsupervised node embedding methods[J].arXiv:1810.12881,2018. [30]WU H,WANG C,TYSHETSKIY Y,et al.Adversarial examples for graph data:deep insights into attack and defense[C]//Proceedings of the Twenty Eighth International Joint Confe-rence on Artificial Intelligence(IJCAI).2019:4816-4823. [31]SUN M,DING X N,CHENG Q.Federated Learning Scheme Based on Differential Privacy[J].Computer Science,2024,51(S1):230600211-6. |
|
||