计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200215-6.doi: 10.11896/jsjkx.241200215
于萍1, 颜辉2, 鲍杰1, 耿晓中1
YU Ping1, YAN Hui2, BAO Jie1, GENG Xiaozhong1
摘要: 优化模型驱动的移动边缘计算(Mobile Edge Computing,MEC)网络任务卸载与迁移策略研究基于物联网设备激增和5G技术推广的背景展开。MEC通过将计算资源迁移至网络边缘,显著降低数据传输延迟和云端压力。为此,提出一系列任务卸载与迁移策略,并通过性能评估验证其效果。实验结果表明,所提策略在典型应用场景中显著优化了关键性能指标:延迟降低约25%,能耗减少30%,任务吞吐量提升20%。具体优化包括:动态资源调度实现负载均衡,改进卸载效率;基于QoS(Qua-lity of Service)保障的迁移机制确保服务稳定性;跨层优化设计提升多任务协作能力。此外,通过机器学习预测技术,动态适应网络波动,提高系统灵活性。研究结论指出,优化模型在确保资源高效分配和任务实时性方面具备突出优势,提升了MEC网络的服务质量和用户体验。策略可广泛适用于异构网络和动态环境,具备进一步拓展的潜力。
中图分类号:
| [1]HU H,SHEN Y.Load balancing task unloading for multi-type task load prediction [J].Computer System Applications,2024,33(12):16-29. [2]WU B,LONG T Y,WAN L,et al.Task unloading strategybased on the improved particle swarm algorithm in MEC [J / OL].Computer Engineering,1-12 [2024-12-29].https://doi.org/10.19678/j.issn.1000-3428.0069852. [3]WANG C,LIU S,ZUO M M.Unloading strategy based on the implicit quantile network [J / OL].Computer Engineering,1-11 [2024-12-29].https://doi.org/10.19678/j.issn.1000-3428.0069929. [4]ZHU Y,JIANG X.Based on cloud edge collaboration [J / OL].Radio Engineering,1-21 [2024-12-29].http://kns.cnki.net/kcms/detail/13.1097.tn.20241010.0924.004.html. [5]HOU J R,QU Y W.Research on semi-migration unloadingmode based on mobile edge computing [J].Journal of Yunnan University for Nationalities(Natural Science Edition),2024,33(6):746-752. [6]CHEN K.Energy efficiency optimization based on depth-determined policy gradient in MEC network [J].Fire and Command and Control,2024,49(7):44-49. [7]XU F,NING X,AN S,et al.Low-orbit satellite network for M-DRL [J].Journal of Xi’an University of Technology,2024,44(3):395-404. [8]DENG H N,YE A Y,LIU Y N,et al.An online task unloading mechanism for privacy perception in mobile edge computing [J].Journal of Information Security,2023,8(4):126-138. [9]KONG X S,YUAN J.Blockchain moving edge computing unloading model based on the bird flock artificial fish flock algorithm [J].Electronics,2024,37(8):26-33. [10]CHEN L.Reinforcement learning-based task unloading and resource allocation in the MEC network [J].Journal of Wuhan University(Engineering Edition),2024,57(3):363-371. |
|
||