计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250400085-7.doi: 10.11896/jsjkx.250400085
吕舒琦1, 张云峰2
LYU Shuqi1, ZHANG Yunfeng2
摘要: 在信用支付服务场景中,欺诈用户的检测问题一直是一个研究热点。在深度学习方法中,通常使用异质信息网络来建模不同类型的节点对象及其交互关系,如用节点表示支付服务场景中的用户及商家,用边来表示节点之间的交互关系,以充分利用图的结构信息。然而,已经提出的很多模型在捕捉节点特征信息时,往往只关注元路径端节点而忽略了元路径中间节点的信息,这将导致信息丢失的问题。因此,提出了一种基于知识图谱嵌入的异构图欺诈用户检测模型。首先,引入知识图谱嵌入方法作为元路径内部聚合编码器,与只关注元路径上端节点的方法不同,元路径内部聚合编码器在获取节点信息时会同时关注元路径中间节点,以聚集整条元路径上的节点信息,能够有效解决信息丢失的问题。除此之外,设计了一个多层融合注意力机制,从节点以及路径层面模拟用户对属性和元路径的偏好,并在全局层面以融合的角度分析特征的重要程度。在不同类型数据集上的实验结果表明,与现有的多种欺诈检测方法相比,所提模型取得了相对较好的结果。
中图分类号:
| [1]HILAL W,ANDREW S,GADSDEN,et al.Financial Fraud:A Review of Anomaly Detection Techniques and Recent Advances[J].Expert Systems with Applications,2022,193:1. [2]KAIDI L,TIANMENG Y,MIN Z,et al.SEFraud:Graph-based Self-Explainable Fraud Detection via Interpretative Mask Lear-ning[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD’24).Association for Computing Machinery,New York,NY,USA,2024:5329-5338. [3]KOKKINAKI A I.On atypical database transactions:identification of probable frauds using machine learning for user profiling[C]//Proceedings 1997 IEEE Knowledge and Data Engineering Exchange Workshop.IEEE,1997:107-113. [4]AGARWAL A,BARHAM P,BREVDO E,et al.Ten-sorflow:A system for large-scale machine learning[C]//Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation.USENIX Association,2016. [5]KHEMANI B,PATIL S,KOTECHA K T S.A review of graph neural networks:concepts,architectures,techniques,challenges,datasets,applications,and future directions[J].Journal of Big Data,2024,11(1). [6]WANG X,BO D,SHI C,et al.A Survey on HeterogeneousGraph Embedding:Methods,Techniques,Applications and Sources[J].IEEE Transactions on Big Data,2023,9(2):415-436. [7]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24. [8]ZHANG M,HE T T,DONG M.Meta-path reasoning of knowledge graph for commonsense question answering[J].Frontiers of Computer Science,2024,18(1):181303. [9]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:135-144. [10]FU X,ZHANG J,MENG Z,et al.Magnn:Metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of The Web Conference 2020.2020:2331-2341. [11]ZHANG Y,KONG X,SHEN Z,et al.A survey on temporalknowledge graph embedding:Models and applications[J].Knowledge-Based Systems,2024,304. [12]GUANGSHANG G.Review of Research on Neural NetworkCombined with Attention Mechanism in Recommendation System[J].Journal of Computer Engineering & Applications,2024,60(10). [13]WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//The World Wide Web Conference.2019:2022-2032. [14]HU B,ZHANG Z,SHI C,et al.Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:946-953. [15]FU X,ZHANG J,MENG Z,et al.MAGNN:Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding[C]//Proceedings of the Web Conference 2020.2020:2331-2341. [16]CHENG D,ZOU Y,XIANG S,et al.Graph neural networks for financial fraud detection:a review[J].Frontiers of Computers Science,2025,19(9):199609. [17]KHODABANDEHLOU S,GOLPAYEGANI A H.FiFrauD:Unsupervised Financial Fraud Detection in Dynamic Graph Streams[J].ACM Transactions on Knowledge Discovery from Data,2024,18(5):29. [18]WANG D,LIN J,CUI P,et al.A Semi-supervised Graph Attentive Network for Financial Fraud Detection[C]//ICDM.IEEE,2019:598-607. [19]LIU Z,CHEN C,LI L,et al.GeniePath:Graph Neural Networks with Adaptive Receptive Paths[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [20]LIU Z,CHEEN C,YANG X,et al.Heterogeneous Graph Neural Networks for Malicious Account Detection[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:2077-2085. [21]WANG J,WEN R,WU C,et al.FdGars:Fraudster Detection via Graph Convolutional Networks in Online App Review System[C]//Companion The 2019 World Wide Web Conference.2019. [22]LI A,QIN Z,LIU R,et al.Spam review detection with graphconvolutional networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:2703-2711. [23]ZHANGY,FAN Y,YE Y,et al.Key player identification in underground forums over attributed heterogeneous information network embedding framework[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:549-558. [24]SHI C,HU B,ZHAO W X,et al.Heterogeneous information network embedding for recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(2):357-370. [25]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26. [26]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014. [27]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI Conference on Artificial Intelligence.2015. [28]NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//ICML.2011. [29]YANG B,YI H W,HE X,et al.Embedding entities and relations for learning and inference in knowledge bases[J].arXiv:1412.6575,2014. [30]DETTMERS T,MINERXINI P,STENETORP P,et al.Convolutional 2d knowledge graph embeddings[C]//Thirty-second AAAI Conference on Artificial Intelligence.2018. [31]VU T,NGUYEN T D,NGUYEN D Q,et al.A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).2019:2180-2189. [32]SUN Z,DENG Z H,NIE J Y,et al.Rotate:Knowledge graph embedding by relational rotation in complex space[J].arXiv:1902.10197,2019. [33]ZHANG S,TAY Y,YAO L,et al.Quaternion knowledge graph embeddings[J].arXiv:1904.10281,2019. [34]XU C,LI R.Relation embedding with dihedral group in knowledge graph[J].arXiv:1906.00687,2019. [35]TROUILLON T,WELLBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//International Confe-rence on Machine Learning.PMLR,2016:2071-2080. |
|
||