计算机科学 ›› 2025, Vol. 52 ›› Issue (12): 391-399.doi: 10.11896/jsjkx.241000161
商云娴, 蔡国永, 刘庆华, 蒋艺明
SHANG Yunxian, CAI Guoyong, LIU Qinghua, JIANG Yiming
摘要: 传统的谣言检测方法仍然有许多不足,如没有充分利用多模态信息,未考虑样本稀缺、标注昂贵、领域变化等实际情况,无法满足需求。为了解决样本稀缺和领域变化的问题,提出了一种新的基于主动学习的多模态谣言检测模型ALMF。ALMF设计了一种基于传播结构图增强的不确定性查询策略,使得主动学习筛选的样本更具有学习价值,同时减少了样本标注量;另外,ALMF使用多模态数据,充分结合文本特征、图像特征以及传播结构特征,通过不同模态特征之间的互补增强,提升了谣言检测能力。在PHEME和WEIBO两个数据集上进行了实验,结果表明,ALMF的性能优于对比模型,准确率提高2%~9%。相比于基于基础查询策略的主动学习,ALMF仅标注约5%的样本取得的性能与全样本时的性能相当。通过使用传播结构图增强的查询策略和跨模态增强的融合方式,ALMF模型成功应对了新领域事件谣言检测面临的挑战。
中图分类号:
| [1]GAO Y,LIANG G,JIANG F,et al.Overview of social network rumor detection [J].Acta Electronica Sinica,2020,48(7):1421. [2]SHU K,SLIVA A,WANG S,et al.Fake news detection on social media:A data mining perspective[J].ACM SIGKDD Explorations Newsletter,2017,19(1):22-36. [3]LIU H,CHEN S,CAO S,et al.Research on False News Detection based on multi-modal Learning [J].Exploration of Compu-ter Science and Technology,2023,17(9):2015-2029. [4]JIN Z,CAO J,ZHANG Y,et al.Novel visual and statisticalimage features for microblogs news verification[J].IEEE Transactions on Multimedia,2016,19(3):598-608. [5]JIN Z,CAO J,HAN G,et al.Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs[C]// Proceedings of the 25th ACM International Conference on Multimedia.ACM,2017:795-816. [6]LU H Y,FAN C Y,WU X J.Small-sample COVID-19 rumor detection for network social media [J].Journal of Chinese Information Technology,2022,36(1):135-144,172. [7]RAN H,JIA C.Unsupervised cross-domain rumor detectionwith contrastive learning and cross-attention[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:13510-13518. [8]LIN H,YI P,MA J,et al.Zero-shot rumor detection with propagation structure via prompt learning[C]// Proceedings of the AAAI Conference on Artificial Intelligence.2023:5213-5221. [9]HASAN M S,ALAM R,ADNAN M A.Truth or lie:Pre-emptive detection of fake news in different languages through entropy-based active learning and multi-model neural ensemble[C]//2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining(ASONAM).IEEE,2020:55-59. [10]CASTILLO C,MENDOZA M,POBLETE B.Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web.2011:675-684. [11]YANG F,LIU Y,YU X,et al.Automatic detection of rumor on sina weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.2012:1-7. [12]YANG Y,ZHENG L,ZHANG J,et al.TI-CNN:Convolutional Neural Networks for Fake News Detection[J].arXiv:1806.00749,2018. [13]YANG X,LYU Y,TIAN T,et al.Rumor detection on socialmedia with graph structured adversarial learning[C]//Procee-dings of the Twenty-ninth International Conference on International Joint Conferences on Artificial Intelligence.2021:1417-1423. [14]WEN W,SU S,YU Z.Cross-lingual cross-platform rumor verification pivoting on multimedia content[J].arXiv:1808.04911,2018. [15]ZUO Y,ZHU W,CAI G G.Continually detection,rapidly react:unseen rumors detection based on continual prompt-tuning[C]//Proceedings of the 29th International Conference on Computational Linguistics.2022:3029-3041. [16]SETTLES B.Active learning literature survey:TR1648 [R].University of Wisconsin-Madison Department of Computer Sciences,2009. [17]SAHAN M,SMIDL V,MARIK R.Active learning for text classification and fake news detection[C]//2021 International Symposium on Computer Science and Intelligent Controls(ISCSIC).IEEE,2021:87-94. [18]FARINNEYA P,POUR M M A,HAMIDIAN S,et al.Active learning for rumor identification on social media[C]//Findings of the Association for Computational Linguistics:EMNLP 2021.2021:4556-4565. [19]SHAO Z,CAI G,LIU Q,et al.An Active Learning Framework for Continuous Rapid Rumor Detection in Evolving Social Media[C]//2024 International Joint Conference on Neural Networks(IJCNN).IEEE,2024:1-8. [20]CUI C,JIA C.Propagation Tree Is Not Deep:Adaptive Graph Contrastive Learning Approach for Rumor Detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:73-81. [21]TANG Y P,LI G X,HUANG S J.ALiPy:Active learning in python[J].arXiv:1901.03802,2019. [22]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [23]ZHENG J,ZHANG X,GUO S,et al.MFAN:Multi-modal Feature-enhanced Attention Networks for Rumor Detection[C]//IJCAI.2022:2413-2419. [24]SONG C,YANG C,CHEN H,et al.CED:Credible early detection of social media rumors[J].IEEE Transactions on Know-ledge and Data Engineering,2019,33(8):3035-3047. [25]ZUBIAGA A,LIAKATA M,PROCTER R.Exploiting context for rumour detection in social media[C]//Social Informatics:9th International Conference.Springer,2017:109-123. [26]SUN M,LI J,GUO Z,et al.Thuctc:an efficient chinese textclassifier[R].GitHub Repository,2016. [27]WANG Y,MA F,JIN Z,et al.Eann:Event adversarial neural networks for multi-modal fake news detection[C]//Proceedings of the 24th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining.2018:849-857. [28]KHATTAR D,GOUD J S,GUPTA M,et al.Mvae:Multimodal variational autoencoder for fake news detection[C]//The world Wide Web Conference.2019:2915-2921. [29]YUAN C,MA Q,ZHOU W,et al.Jointly embedding the local and global relations of heterogeneous graph for rumor detection[C]//2019 IEEE International Conference on Data Mining(ICDM).IEEE,2019:796-805. [30]CHEN F,LI X,LI Z,et al.Multimodal Rumor Detection viaMultimodal Prompt Learning[C]//2024 International Joint Conference on Neural Networks(IJCNN).IEEE,2024:1-8. [31]LIU T,CAI Q,XU C,et al.Rumor Detection with a novel graph neural network approach[J].arXiv:2403.16206,2024. [32]YI F,LIU H,HE H,et al.A Comparative Analysis of Active Learning for Rumor Detection on Social Media Platforms[J].Applied Sciences,2023,13(22):12098. |
|
||