Computer Science ›› 2025, Vol. 52 ›› Issue (12): 391-399.doi: 10.11896/jsjkx.241000161
• Information Security • Previous Articles Next Articles
SHANG Yunxian, CAI Guoyong, LIU Qinghua, JIANG Yiming
CLC Number:
| [1]GAO Y,LIANG G,JIANG F,et al.Overview of social network rumor detection [J].Acta Electronica Sinica,2020,48(7):1421. [2]SHU K,SLIVA A,WANG S,et al.Fake news detection on social media:A data mining perspective[J].ACM SIGKDD Explorations Newsletter,2017,19(1):22-36. [3]LIU H,CHEN S,CAO S,et al.Research on False News Detection based on multi-modal Learning [J].Exploration of Compu-ter Science and Technology,2023,17(9):2015-2029. [4]JIN Z,CAO J,ZHANG Y,et al.Novel visual and statisticalimage features for microblogs news verification[J].IEEE Transactions on Multimedia,2016,19(3):598-608. [5]JIN Z,CAO J,HAN G,et al.Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs[C]// Proceedings of the 25th ACM International Conference on Multimedia.ACM,2017:795-816. [6]LU H Y,FAN C Y,WU X J.Small-sample COVID-19 rumor detection for network social media [J].Journal of Chinese Information Technology,2022,36(1):135-144,172. [7]RAN H,JIA C.Unsupervised cross-domain rumor detectionwith contrastive learning and cross-attention[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:13510-13518. [8]LIN H,YI P,MA J,et al.Zero-shot rumor detection with propagation structure via prompt learning[C]// Proceedings of the AAAI Conference on Artificial Intelligence.2023:5213-5221. [9]HASAN M S,ALAM R,ADNAN M A.Truth or lie:Pre-emptive detection of fake news in different languages through entropy-based active learning and multi-model neural ensemble[C]//2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining(ASONAM).IEEE,2020:55-59. [10]CASTILLO C,MENDOZA M,POBLETE B.Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web.2011:675-684. [11]YANG F,LIU Y,YU X,et al.Automatic detection of rumor on sina weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.2012:1-7. [12]YANG Y,ZHENG L,ZHANG J,et al.TI-CNN:Convolutional Neural Networks for Fake News Detection[J].arXiv:1806.00749,2018. [13]YANG X,LYU Y,TIAN T,et al.Rumor detection on socialmedia with graph structured adversarial learning[C]//Procee-dings of the Twenty-ninth International Conference on International Joint Conferences on Artificial Intelligence.2021:1417-1423. [14]WEN W,SU S,YU Z.Cross-lingual cross-platform rumor verification pivoting on multimedia content[J].arXiv:1808.04911,2018. [15]ZUO Y,ZHU W,CAI G G.Continually detection,rapidly react:unseen rumors detection based on continual prompt-tuning[C]//Proceedings of the 29th International Conference on Computational Linguistics.2022:3029-3041. [16]SETTLES B.Active learning literature survey:TR1648 [R].University of Wisconsin-Madison Department of Computer Sciences,2009. [17]SAHAN M,SMIDL V,MARIK R.Active learning for text classification and fake news detection[C]//2021 International Symposium on Computer Science and Intelligent Controls(ISCSIC).IEEE,2021:87-94. [18]FARINNEYA P,POUR M M A,HAMIDIAN S,et al.Active learning for rumor identification on social media[C]//Findings of the Association for Computational Linguistics:EMNLP 2021.2021:4556-4565. [19]SHAO Z,CAI G,LIU Q,et al.An Active Learning Framework for Continuous Rapid Rumor Detection in Evolving Social Media[C]//2024 International Joint Conference on Neural Networks(IJCNN).IEEE,2024:1-8. [20]CUI C,JIA C.Propagation Tree Is Not Deep:Adaptive Graph Contrastive Learning Approach for Rumor Detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:73-81. [21]TANG Y P,LI G X,HUANG S J.ALiPy:Active learning in python[J].arXiv:1901.03802,2019. [22]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [23]ZHENG J,ZHANG X,GUO S,et al.MFAN:Multi-modal Feature-enhanced Attention Networks for Rumor Detection[C]//IJCAI.2022:2413-2419. [24]SONG C,YANG C,CHEN H,et al.CED:Credible early detection of social media rumors[J].IEEE Transactions on Know-ledge and Data Engineering,2019,33(8):3035-3047. [25]ZUBIAGA A,LIAKATA M,PROCTER R.Exploiting context for rumour detection in social media[C]//Social Informatics:9th International Conference.Springer,2017:109-123. [26]SUN M,LI J,GUO Z,et al.Thuctc:an efficient chinese textclassifier[R].GitHub Repository,2016. [27]WANG Y,MA F,JIN Z,et al.Eann:Event adversarial neural networks for multi-modal fake news detection[C]//Proceedings of the 24th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining.2018:849-857. [28]KHATTAR D,GOUD J S,GUPTA M,et al.Mvae:Multimodal variational autoencoder for fake news detection[C]//The world Wide Web Conference.2019:2915-2921. [29]YUAN C,MA Q,ZHOU W,et al.Jointly embedding the local and global relations of heterogeneous graph for rumor detection[C]//2019 IEEE International Conference on Data Mining(ICDM).IEEE,2019:796-805. [30]CHEN F,LI X,LI Z,et al.Multimodal Rumor Detection viaMultimodal Prompt Learning[C]//2024 International Joint Conference on Neural Networks(IJCNN).IEEE,2024:1-8. [31]LIU T,CAI Q,XU C,et al.Rumor Detection with a novel graph neural network approach[J].arXiv:2403.16206,2024. [32]YI F,LIU H,HE H,et al.A Comparative Analysis of Active Learning for Rumor Detection on Social Media Platforms[J].Applied Sciences,2023,13(22):12098. |
| [1] | ZENG Xinran, LI Tianrui, LI Chongshou. Active Learning for Point Cloud Semantic Segmentation Based on Dynamic Balance and DistanceSuppression [J]. Computer Science, 2025, 52(8): 180-187. |
| [2] | ZHANG Shuai, ZHOU Peng, ZHANG Yanping. Online Capricious Data Stream Learning with Sparse Labels [J]. Computer Science, 2025, 52(6): 139-150. |
| [3] | LI Shao, JIANG Fangting, YANG Xinyan, LIANG Gang. Rumor Detection on Potential Hot Topics with Bi-directional Graph Attention Network [J]. Computer Science, 2025, 52(3): 277-286. |
| [4] | HE Hao, ZHANG Hui. Intrusion Detection Method Based on Improved Active Learning [J]. Computer Science, 2025, 52(10): 357-365. |
| [5] | LI Yahe, XIE Zhipeng. Active Learning Based on Maximum Influence Set [J]. Computer Science, 2025, 52(1): 289-297. |
| [6] | HUANG Xiaofei, GUO Weibin. Multi-modal Fusion Method Based on Dual Encoders [J]. Computer Science, 2024, 51(9): 207-213. |
| [7] | HE Shiyang, WANG Zhaohui, GONG Shengrong, ZHONG Shan. Cross-modal Information Filtering-based Networks for Visual Question Answering [J]. Computer Science, 2024, 51(5): 85-91. |
| [8] | XING Kaiyan, CHEN Wen. Multi-generator Active Learning Algorithm Based on Reverse Label Propagation and ItsApplication in Outlier Detection [J]. Computer Science, 2024, 51(4): 359-365. |
| [9] | XU Bangwu, WU Qin, ZHOU Haojie. Appearance Fusion Based Motion-aware Architecture for Moving Object Segmentation [J]. Computer Science, 2024, 51(3): 155-164. |
| [10] | ZHOU Shenghao, YUAN Weiwei, GUAN Donghai. Local Interpretable Model-agnostic Explanations Based on Active Learning and Rational Quadratic Kernel [J]. Computer Science, 2024, 51(2): 245-251. |
| [11] | LIU Dongxu, DUAN Liguo, CUI Juanjuan, CHANG Xuanwei. Short Text Semantic Matching Strategy Fusing Sememe Similarity Matrix and Dual-channel of Char-Word Vectors [J]. Computer Science, 2024, 51(12): 250-258. |
| [12] | CHEN Xin, RONG Huan, GUO Shangbin, YANG Bin. Graph Convolution Spatio-Temporal Attention Fusion and Graph Reconstruction Method forRumor Detection [J]. Computer Science, 2024, 51(11): 54-64. |
| [13] | ZHANG Yian, YANG Ying, REN Gang, WANG Gang. Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(8): 37-44. |
| [14] | QI Xuanlong, CHEN Hongyang, ZHAO Wenbing, ZHAO Di, GAO Jingyang. Study on BGA Packaging Void Rate Detection Based on Active Learning and U-Net++ Segmentation [J]. Computer Science, 2023, 50(6A): 220200092-6. |
| [15] | GUO Wei, HUANG Jiahui, HOU Chenyu, CAO Bin. Text Classification Method Based on Anti-noise and Double Distillation Technology [J]. Computer Science, 2023, 50(6): 251-260. |
|
||