计算机科学 ›› 2013, Vol. 40 ›› Issue (10): 39-44.

• 网络与通信 • 上一篇    下一篇

云环境下计算资源动态能耗感知的并行任务调度方法

曹洁,曾国荪   

  1. 同济大学计算机科学与技术系 上海200092国家高性能计算机工程技术中心同济分中心 上海200092;同济大学计算机科学与技术系 上海200092国家高性能计算机工程技术中心同济分中心 上海200092
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家863高技术研究发展计划(2009AA012201),国家自然基金项目(61272107,61103068),NSFC-微软亚洲研究院联合资助

Scheduling Method for Parallel Task of Dynamic Energy-aware of Computing Resources in Cloud Environment

CAO Jie and ZENG Guo-sun   

  • Online:2018-11-16 Published:2018-11-16

摘要: 云计算是一种新兴的计算模式,倡导一切皆服务。要实现低成本、高效、安全、易用的云计算系统,依然面临诸多挑战,其中,高能耗已成为云计算不可忽视的问题。在计算资源电压可动态调整的环境下,为截止完成时间有要求的并行任务,提出两种满足并行任务截止时间要求的降低并行任务执行能耗的调度方法Ssef和Egsa。模拟实验表明,提出的算法在保证并行任务截止完成时间要求的条件下能够有效降低并行任务的执行能耗,从而大幅度降低云计算系统的能耗开销。

关键词: 云计算,绿色计算,子截止时间,节能调度

Abstract: Cloud computing becomes more and more popular in large scale computing and data store recently because it enables the sharing of computing resources that are distributed all over the world.Cloud computing system is still facing many challenges in achieving low-cost,efficient,safe,easy-to-use computing.Saving computing resources energy has become a significant research topic which needs to be solved urgently.We proposed a subdeadline distribution approach to satisfy the deadline requirements of parallel tasks deadline.To achieve the goal of saving energy in the environment of the computing resources supply voltage to be dynamically adjusted,we proposed two energy-efficient scheduling algorithms—— energy first scheduling algorithm(Ssef) and energy genetic scheduling algorithm(Egsa) to satisfy subdeadline.Repeated experiments show that this two energy-efficient scheduling strategies can reduce the energy consumption considerably while meeting deadline constraints.

Key words: Cloud computing,Green computing,Subdeadline,Energy efficient scheduling

[1] Plan G A.An efficient Truth[R].Global Action Plan Report.http://global action plan.org.uk,Dec.2007
[2] Yun D,Lee J.Research in green network f or future Internet[J].Journal of KIISE,2010,28(1):41-51
[3] Lin Chuang,Tian Yuan,Yao Min.Green network and green evaluation:Mechanism,modeling and evaluation[J].Chinese Journal of Computers,2011,34(4):593-612
[4] 谭一鸣,曾国荪,王伟.随机任务在云计算平台中能耗的优化管理方法[J].软件学报,2012,3(2):266-278
[5] Venkatachalam V,Franz M.Power reduction techniques for microprocessor systems[J].ACM Computing Surveys,2005,7(3):195-237
[6] Blume H,Livonius J V,Rotenberg L,et al.OpenMP-Based para-llelization on an MPcore multiprocessor platform—A perfor-mance and power analysis[J].Journal of Systems Architecture,2008,4(11):1019-1029
[7] Zhu D,Melhem R,Childers B R.Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems[J].IEEE Transactions on Parallel and Distributed Systems,2003,14(7):686-700
[8] Ge R,Feng X,Cameron K W.Performance-constrained distributed dvs scheduling for scientific applications on power-aware clusters[C]∥Proceedings of the ACM/IEEE Conference on Supercomputing.November 2005:34-44
[9] Khan S U,Ahmad I.A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids[J].IEEE Transactions on Parallel and Distributed Systems,2009,20(3):346-360
[10] Mezmaza M,Melabb N.A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems[J].J.Parallel Distrib.Comput.,2011,71:1497-1508
[11] Bradley D,Harper R,Hunter S.Workload-based power management for parallel computer systems[J].IBM Journal of Research and Development,2003,47(5):703-718
[12] Lawson B,Smirni E.Power-aware resource allocation in high-end systems via online simulation[C]∥Proceedings of the 19th Annual International Conference on Supercomputing.Cambridge,USA,2005
[13] 李新,贾智平,鞠雷,等.一种面向同构集群系统的并行任务节能调度优化方法[J].计算机学报,2012,5(3):591-602
[14] 朱勇,罗军舟,李伟.一种工作流环境下能耗感知的多路径服务组合方法[J].计算机学报,2012,5(3):627-638
[15] 张法,Anta A F,王林,等.网络能耗系统模型及能效算法[J].计算机学报,2012,5(3):603-615
[16] Mezmaz M,Melab N,Kessaci Y,et al.A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems[J].J.Parallel Distrib.Comput.,2011,71:1497-1508
[17] Iqbal M A,Javed D M,Qayyum U.Curvelet-based Image Compression with SPIHT[C]∥2007International Conference on Convergence Information Technology.Washington:IEEE Computer Society,2007:961-965
[18] Calheiros R N,Ranjan R, Rose C A F D,et al.Cloudsim:A novel framework for modeling and simulation of cloud computing infrastructures and services[R].GRIDS-TR-2009-1.Grid Computing and Distributed Systems Laboratory,The University of Melbourne,Australia,March 2009
[19] Topcuoglu H,Hariri S,Wu M.Performance-effective and low-complexity task scheduling for heterogeneous computing [J].IEEE Transactions on Parallel and Distributed Systems,2002,13(3):260-274
[20] Ranaweera an S,Agrawal D P.A Task Duplication Based Sche-duling Algorithm for Heterogeneous Systems[C]∥Proc.Parallel and Distributed Processing Symp.May 2000:445-450

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!