计算机科学 ›› 2013, Vol. 40 ›› Issue (10): 32-38.
程学云,管致锦,张海豹,丁卫平
CHENG Xue-yun,GUAN Zhi-jin,ZHANG Hai-bao and DING Wei-pin
摘要: 可逆电路的优化是可逆逻辑综合的关键问题之一。为了解决可逆Toffoli电路优化问题中算法复杂度高和电路规模可扩充性差的问题,分析归纳了相邻Toffoli门的关系,提出并证明了可逆Toffoli电路中子序列的移动和化简规则,并基于这些规则给出了可逆Toffoli电路的优化算法。根据移动规则对可逆电路进行正向和反向扫描,寻找满足化简规则的子序列进行优化,直到可逆电路不发生变化为止。该优化算法与可逆电路的输入线数无关,无需存储额外信息,适用于各种不同类型的Toffoli电路合成方法,算法复杂度为O(s3),优于通常使用的模板优化的复杂度O(n!t2s3)。在具体实例和国际认可的所有3变量可逆函数上的验证结果表明,该优化算法能有效地减少可逆电路的门数和控制位数,降低可逆电路的代价。
[1] Nielsen M,Chuang I.Quantum Computation and Quantum Information[M].Cambridge Univ.Press,2000 [2] De Vos A,Desoete B,Janiak F,et al.Control Gates as Building Blocks for Reversible Computers[A]∥Proceedings of 11th International Workshop on Power and Timing Modeling,Optimization and Simulation[C].Yverdon,Switzerland,Sep.2001:9201-9210 [3] Merkle R C.Two types of mechanical reversible logoc[J].Nanotechnology,1993(4):114-131 [4] Wille R,Grobe D.Fast exact Toffoli network synthesis of reversible logic[A]∥Proceedings of International Conference on Computer-Aided Design[C].San Jose,USA,Nov.2007:60-64 [5] 倪丽慧,管致锦,聂志浪.基于可逆函数复杂性的正反控制门可逆网络综合[J].计算机科学,2010,37(11):117-121 [6] Miller D M,Maslov D,Dueck G W.A transformation based algorithm for reversible logic synthesis[A]∥Proceedings of DAC[C].Anahem,California,USA,2003:318-323 [7] Wan Si-shuang,Chen Han-wu,Cao Ru-jin.A Novel Transformation-Based Algorithm for Reversible Logic Synthesis[A]∥Proceedings of the 4th International Symposium on Intelligence Computation and Applications(ISICA)[C].Wuhan,PRC,Oct.2009:70-81 [8] Zheng Y,Huang C.A novel Toffoli network synthesis algorithm for reversible logic[A]∥Proceedings of the 2009Asia and South Pacific Design Automation Conference[C].Los Alamitos:IEEE Computer Society Press,2009:739-744 [9] Arabzadeh M,Saeedi M,Zamani M S.Rule-based Optimization of Reversible Circuits[A]∥Proceedings of ASP-DAC’2010[C].Taipei,Taiwan,Jan.2010:849-854 [10] Maslov D,Dueck G W,Miller D M.Toffoli network synthesis with templates [J].Computer Aided Design of Integrated Circuits and Systems,2005,24(6):807-817 [11] Maslov D,Dueck G,Miller D.Techniques for the synthesis of reversible Toffoli networks[J].ACM Transactions on Design Automation of Electronic Systems,2007,12(4):42 [12] 陈汉武,李志强,李文骞.量子可逆逻辑综合的关键技术及其算法的研究[J].软件学报,2009,2:570-583 [13] 管致锦,秦小麟,施佺,等.基于正反控制模型的可逆逻辑综合[J].计算机学报,2008,1(5):835-844 [14] Maslov D,Dueck G W,Miller D M.Simplification of Toffoli networks via templates[A]∥Proceedings of Integrated Circuits and Systems Design[C].San Paulo:IEEE Computer Society,2003:53-58 |
No related articles found! |
|