计算机科学 ›› 2007, Vol. 34 ›› Issue (9): 189-190.

• 软件工程与数据库技术 • 上一篇    下一篇

基于分形维数的属性约简

郭平 陈其鑫 王艳霞   

  1. 重庆大学计算机学院,重庆400044
  • 出版日期:2018-11-16 发布日期:2018-11-16

GUO Ping, CHEN Qi-Xin, WANG Yan-Xia (School of Computer Science, Chongqing University, Chongqing 400044)   

  • Online:2018-11-16 Published:2018-11-16

摘要: 关于属性约简的算法已经提出了许多,基于粗糙集的属性约简算法就是其中的一类。但该类算法执行效率低且不一定得到最小约简。本文讨论了基于可辨识矩阵的属性频度算法(BDMF)并提出了基于分形维数的向后剔除属性约简算法(FDR)。仿真实验表明FDR比BDMF的运行效率高,且约简的效果更好。

关键词: 属性约简 分形维数 可辨识矩阵 属性频度 粗糙集

Abstract: Among those algorithms of attribute reduction proposed, some based on rough set. However, this type of algorithm is not efficient enough and also minimum reduction would not necessarily achieved by them. In this pqper, the algorithm on attribute frequency

Key words: Attribute reduction,Fractal dimension,Discrimination matrix,Attribute frequency,Rough set

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!