1974年1月创刊(月刊)
主管/主办:重庆西南信息有限公司
ISSN 1002-137X
CN 50-1075/TP
CODEN JKIEBK
编辑中心
    计算机图形学&多媒体 栏目所有文章列表
    (按年度、期号倒序)
        一年内发表的文章 |  两年内 |  三年内 |  全部
    Please wait a minute...
    1. 动态低采样环境光遮蔽的实时光线追踪分子渲染
    李家振, 纪庆革
    计算机科学    2022, 49 (1): 175-180.   https://doi.org/10.11896/jsjkx.210200042
    摘要 (17)   PDF (2726KB) (28)  
    分子可视化工作中高质量的分子渲染效果对研究人员观察生物分子结构尤为重要。主流分子可视化工具中常用的光栅化方法渲染效果不佳,不利于研究人员观察分子结构。先进的光线追踪渲染技术可以实现高质量的渲染效果,但目前工具中支持光线追踪的分子渲染方法存在使用平台限制、实时性能不足以及渲染质量不佳的问题。文中提出一种动态低采样环境光遮蔽的实时光线追踪分子渲染方法,其中提出了光线追踪中简易的重投影方法,用于实现动态低采样环境光遮蔽的时间性降噪;以及提出了阴影光线包装策略,改进了光线遍历场景时的计算并行度。实验结果表明,所提方法在个人电脑上可达到实时交互渲染性能,并且在“天河二号”平台上与先进的VMD-OSPRay方法相比,该方法获得了1.40~1.64倍的性能加速,同时改善了动态图像严重的噪点问题。
    参考文献 | 相关文章 | 多维度评价
    2. 基于骨架模态的多级门控图卷积动作识别网络
    干创, 吴桂兴, 詹庆原, 王鹏焜, 彭志磊
    计算机科学    2022, 49 (1): 181-186.   https://doi.org/10.11896/jsjkx.201100164
    摘要 (14)   PDF (2636KB) (33)  
    人类动作识别是一个极具挑战性的研究课题,广泛应用于安全监控、人机交互和自动驾驶等领域。近年来,图卷积网络在建模非欧几里德结构数据上取得了巨大成功,为骨架模态动作识别提供了新思路。由于骨架预定义图包含大量噪声,现有方法多使用高阶空域特征对空间依赖性进行建模。然而,仅关注高阶子集并不能在全局上反映顶点之间的动态相关性。此外,主流方法中模拟时间依赖性使用的卷积神经网络或循环神经网络也无法捕获多范围的时序关系。为了解决这些问题,文中提出了一种基于骨架模态的多级门控图卷积动作识别网络框架。具体地,提出了门控时序卷积模块来提取时域顶点之间的多时期依赖关系;同时,通过多维注意力机制来增强图的全局表征。为了验证所提方法的有效性,在NTU-RGB+D和Kinetics两个大型视频行为识别基准数据集上进行了实验。结果表明,所提方法的性能优于目前最先进的方法。
    参考文献 | 相关文章 | 多维度评价
    3. 基于低秩矩阵估计的暗光图像增强模型
    王以涵, 郝世杰, 韩徐, 洪日昌
    计算机科学    2022, 49 (1): 187-193.   https://doi.org/10.11896/jsjkx.210600090
    摘要 (15)   PDF (2534KB) (43)  
    在暗光或逆光拍照时,获得的图像常常出现过暗或光照分布不均的现象,导致图像视觉质量较差。基于Retinex模型的暗光增强模型能实现有效地光照增强。但此类暗光增强模型也存在一些问题,即待处理图像中暗光区域的可视度虽然得到了有效改善,但其中隐藏的噪声也被放大和凸显,依旧影响了增强结果的视觉质量。为解决这一问题,构建了基于低秩矩阵估计的暗光图像增强模型。首先,构建包含噪声项的Retinex模型并对其进行交替优化,将暗光图像分解为光照层I以及反射层R。在这一过程中,利用低秩矩阵估计实现了对R层的噪声抑制。其次,考虑到在去噪过程中产生的图像细节被模糊的问题,进一步利用光照层I作为导向图,来融合包含和不包含去噪效果的两种增强图像,实现兼顾噪声抑制和图像原有细节保持的效果。与多种类型的暗光增强方法进行对比,所提模型在直观视觉比较和客观量化指标比较方面均取得了较好的结果。
    参考文献 | 相关文章 | 多维度评价
    4. 基于自适应码率移动增强现实应用的能效优化研究
    陈乐, 高岭, 任杰, 党鑫, 王祎昊, 曹瑞, 郑杰, 王海
    计算机科学    2022, 49 (1): 194-203.   https://doi.org/10.11896/jsjkx.201100107
    摘要 (18)   PDF (3997KB) (37)  
    随着移动增强现实(Mobile Augmented Reality,MAR)技术的飞速发展,MAR应用的种类及功能也越来越丰富多样,与此同时用户对MAR应用的视频质量及响应时间也提出了更高的要求。通常来说,MAR应用会将计算密集型任务(目标识别及渲染)卸载到云端或边缘服务器进行处理,并将渲染后的图像下载到移动端。但由于移动网络状态的不稳定性及网络带宽的限制,海量数据的传输将延长MAR应用响应时间,进而增加移动设备的传输能耗开销,严重影响用户使用体验。由此,文中提出了一种基于梯度提升回归(Gradient Boosting Regression,GBR)的自适应码率控制模型。该模型通过感知当前网络环境及拍摄内容,预测用户观感需求并对非关注点部分进行低码率压缩,从而在不影响用户体验的情况下尽可能地降低传输数据量,缩短响应时间。具体来说,通过分析200个热门视频的视频特征,构建视频特征同用户观感需求的内在联系,从而针对不同的用户需求提供合适的视频码率配置,由此达到维持体验、减少时延、节约能耗的目标。实验结果显示,同直接下载渲染后的1080p视频相比,提出的自适应码率控制模型在尽可能维持用户观感体验的前提下,每帧的下载时间平均减少了58%(19.13 ms)。
    参考文献 | 相关文章 | 多维度评价
    5. 一种高精度路面裂缝检测网络结构:Crack U-Net
    祝一帆, 王海涛, 李可, 吴贺俊
    计算机科学    2022, 49 (1): 204-211.   https://doi.org/10.11896/jsjkx.210100128
    摘要 (18)   PDF (3818KB) (31)  
    路面裂缝对行车安全有很大的潜在威胁,以往的人工检测方法效率不高。现有裂缝检测方法模型泛化能力低,在复杂背景下的裂缝分割能力差且效率不高。为了解决这些问题,文中提出了一种基于编码器-解码器结构的新改进型网络结构Crack U-Net,目的是提高路面裂缝检测的模型泛化性以及检测精度。首先,Crack U-Net用密集连接结构增强了基于编码器-解码器的网络U-Net模型,在以往结构的基础上提高了网络各层特征信息利用率,增强了模型的鲁棒性;其次,Crack U-Net使用由残差块和mini-U组成的Crack U-block作为网络的基础卷积模块,相比传统双层卷积层,Crack U-block可以提取出更丰富的裂缝特征;最后,在Crack U-Net的下采样节点中使用了空洞卷积替代传统卷积核,以充分捕获图像边缘的裂缝特征。为验证Crack U-Net模型的有效性,在公开裂缝数据集上进行了一系列测试。实验结果显示,Crack U-Net在数据集上的AIU值比以往方法提升了2.2%,在裂缝分割精度、泛化性上都优于现有方法。另外,参数轻量化部分的实验证明,Crack U-Net可以进行很大程度的模型剪枝,无人机等移动设备将可满足剪枝后的Crack U-Net模型所需的计算资源。
    参考文献 | 相关文章 | 多维度评价
    6. 面向多标签小样本学习的双流重构网络
    方仲礼, 王喆, 迟子秋
    计算机科学    2022, 49 (1): 212-218.   https://doi.org/10.11896/jsjkx.201100143
    摘要 (12)   PDF (2244KB) (37)  
    多标签图像分类问题是计算机视觉领域的重要问题之一,它需要对图像中的所有标签进行预测。而一幅图像中待分类的标签个数往往不止一个,同时图像中对象的大小、位置和姿态的变化都会对模型的分类性能产生影响。因此,如何有效地提高图像特征的准确表达能力是一个亟需解决的难题。 针对上述难题,文中提出了一个新颖的双流重构网络来对图像进行特征抽取。具体而言,该模型首先应用一个双流注意力网络来对图像进行基于通道信息和空间信息的特征提取,并经过特征拼接使得图像特征同时兼顾通道特征细节信息和空间特征细节信息。其次,该模型引入了重构损失函数,对双流网络进行特征约束,迫使上述两种分歧特征具有相同的特征表达能力,以此促使提取的双流特征共同向真值特征迫近。在基于VOC 2007和MS COCO多标签图像数据集上的实验结果表明,所提出的双流重构网络能够准确有效地提取出显著特征,并产生更好的分类精度。同时,鉴于重建损失对模型的解拟合作用,将该方法应用在小样本场景上,实验结果显示,所提模型对小样本数据同样具有较好的分类精度。
    参考文献 | 相关文章 | 多维度评价
    7. 基于视觉方面注意力的图像文本情感分析模型
    袁景凌, 丁远远, 盛德明, 李琳
    计算机科学    2022, 49 (1): 219-224.   https://doi.org/10.11896/jsjkx.201000074
    摘要 (15)   PDF (2378KB) (45)  
    社交网络已经成为人们日常生活中不可分割的一部分,对社交媒体信息进行情感分析有助于了解人们在社交网站上的观点、态度和情绪。传统情感分析主要依赖文本内容,随着智能手机的兴起,网络上的信息逐渐多样化,除了文本内容,还包括图像。通过研究发现,在多数情况下,图像对文本有着支持增强作用,而不独立于文本来表达情感。文中提出了一种新颖的图像文本情感分析模型(LSTM-VistaNet),具体来说,LSTM-VistaNet模型未将图像信息作为直接输入,而是利用VGG16网络提取图像特征,进一步生成视觉方面注意力,赋予文档中核心句子更高的权重,得到基于视觉方面注意力的文档表示;此外,还使用LSTM模型对文本情感进行提取,得到基于文本的文档表示。最后,将两组分类结果进行融合,以获得最终的分类标签。在Yelp餐馆评论的数据集上,所提模型在精确度上达到了62.08%,比精度较高的模型BiGRU-mVGG提高了18.92%,验证了将视觉信息作为方面注意力辅助文本进行情感分类的有效性;比VistaNet模型提高了0.32%,验证了使用LSTM模型可以有效弥补VistaNet模型中图像无法完全覆盖文本的缺陷。
    参考文献 | 相关文章 | 多维度评价
    8. 基于场景先验知识的室内人体行为识别方法
    刘昕, 袁家斌, 王天星
    计算机科学    2022, 49 (1): 225-232.   https://doi.org/10.11896/jsjkx.201100185
    摘要 (20)   PDF (2920KB) (43)  
    目前,室内人体行为识别技术被广泛应用于视频内容理解、居家养老、医疗护理等领域,现有研究方法更多的是对人体行为进行建模,忽略了视频中场景与人体行为间的联系。为了充分利用场景信息与室内人体运动的关联性,文中对基于场景先验知识的室内人体行为识别方法进行了研究,提出了一种基于场景先验知识的双流膨胀3D行为识别网络(Scene-Prior Know-ledge Inflated 3D ConvNet,SPI3D)。首先使用ResNet152网络提取场景特征进行场景分类,再基于场景分类的结果,引入量化后的场景先验知识,通过对权值进行约束来优化总体目标函数。另外,针对现有数据集多聚焦于人体行为特征、场景复杂且场景特征不明显的问题,自建了室内场景-行为识别数据集(Scene-Action DataBase,SADB)。实验结果表明,在SADB数据集上,SPI3D网络的识别准确率为87.9%,比直接利用I3D网络的识别准确率高6%。由此可见,引入场景先验知识后的室内人体行为识别模型具有更好的表现。
    参考文献 | 相关文章 | 多维度评价
    9. 基于场景图的段落生成序列图像方法
    张玮琪, 汤轶丰, 李林燕, 胡伏原
    计算机科学    2022, 49 (1): 233-240.   https://doi.org/10.11896/jsjkx.201100207
    摘要 (21)   PDF (3031KB) (26)  
    通过生成对抗网络进行段落生成序列图像的任务已经可以生成质量较高的图像。然而当输入的文本涉及多个对象和关系时,文本序列的上下文信息难以提取,生成图像的对象布局容易产生混乱,生成的对象细节不足。针对该问题,文中在StoryGAN的基础上,提出了一种基于场景图的段落生成序列图像方法。首先,通过图卷积将段落转换为多个场景图,每个场景图包含对应文本的对象和关系信息;然后,预测对象的边界框和分割掩膜来计算生成场景布局;最后,根据场景布局和上下文信息生成更符合对象及其关系的序列图像。在CLEVR-SV和CoDraw-SV数据集上进行测试,该方法可以生成包含多个对象及其关系的64×64像素的序列图像。实验结果表明,在CLEVR-SV数据集上,所提方法的SSIM和FID比StoryGAN分别提升了1.34%和9.49%;在CoDraw-SV数据集上,所提方法的ACC比StoryGAN提高了7.40%。所提方法提高了生成场景的布局合理性,不仅可以生成包含多个对象和关系的图像序列,而且生成的图像质量更高,细节更清晰。
    参考文献 | 相关文章 | 多维度评价
    10. 图像去雨算法在云物联网应用中的研究综述
    张育龙, 王强, 陈明康, 孙静涛
    计算机科学    2021, 48 (12): 231-242.   https://doi.org/10.11896/jsjkx.201000055
    摘要 (62)   PDF (5222KB) (164)  
    《2020 年中国智能物联网(AIoT)白皮书》显示,随着我国5G网络的迅猛发展,大容量低价格的IoT(Internet of Things)传感器设备快速普及,数据呈爆发性增长,图像处理在物联网的诸多领域(如智慧城市、智慧交通、智慧医疗等)得到了广泛应用。在这些领域研究中,科研人员往往相对轻视数据收集过程中的实际问题,如天气变化、季节迁移、昼夜交替等时间变化带来的图像数据退化,以及随着物体移动、叠加、模糊、部分遮挡等诸多空间变化带来的噪声问题。其中,以雨天为代表的复杂天气下的图像模糊问题非常常见,也最具挑战。因此,文中对数据收集过程中的上述实际问题进行了系统性的调查,归类和总结了复杂天气下的图像去雨算法。与此同时,鉴于此类算法的执行需要消耗大量GPU计算资源,文中通过利用Amazon EC2云服务器中G4和P3系列的GPU实例对综述的各种去雨算法的处理时长和去雨效果进行了定量化评估,并阐述了各类去雨算法的特点和在云物联网应用中的最新趋势。
    参考文献 | 相关文章 | 多维度评价
    首页 | 前页| 后页 | 尾页 第1页 共20页 共198条记录