1974年1月创刊(月刊)
主管/主办:重庆西南信息有限公司
ISSN 1002-137X
CN 50-1075/TP
CODEN JKIEBK
编辑中心
    人工智能* 栏目所有文章列表
    (按年度、期号倒序)
        一年内发表的文章 |  两年内 |  三年内 |  全部
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 基于强化学习的推荐研究综述
    余力, 杜启翰, 岳博妍, 向君瑶, 徐冠宇, 冷友方
    计算机科学    2021, 48 (10): 1-18.   DOI: 10.11896/jsjkx.210200085
    摘要1152)      PDF(pc) (2455KB)(3165)    收藏
    推荐系统致力于从海量数据中为用户寻找并自动推荐有价值的信息和服务,可有效解决信息过载问题,成为大数据时代一种重要的信息技术。但推荐系统的数据稀疏性、冷启动和可解释性等问题,仍是制约推荐系统广泛应用的关键技术难点。强化学习是一种交互学习技术,该方法通过与用户交互并获得反馈来实时捕捉其兴趣漂移,从而动态地建模用户偏好,可以较好地解决传统推荐系统面临的经典关键问题。强化学习已成为近年来推荐系统领域的研究热点。文中从综述的角度,首先在简要回顾推荐系统和强化学习的基础上,分析了强化学习对推荐系统的提升思路,对近年来基于强化学习的推荐研究进行了梳理与总结,并分别对传统强化学习推荐和深度强化学习推荐的研究情况进行总结;在此基础上,重点总结了近年来强化学习推荐研究的若干前沿,以及其应用研究情况。最后,对强化学习在推荐系统中应用的未来发展趋势进行分析与展望。
    参考文献 | 相关文章 | 多维度评价
    2. 移动机器人全局路径规划算法综述
    王梓强, 胡晓光, 李晓筱, 杜卓群
    计算机科学    2021, 48 (10): 19-29.   DOI: 10.11896/jsjkx.200700114
    摘要797)      PDF(pc) (1835KB)(3262)    收藏
    全局路径规划是移动机器人室外工作的关键技术,全局路径规划相关算法主要应用于地理场景预知的室外环境中,机器人面对复杂多变的室外环境,通过对算法的优化改进来提高机器人路径规划的实时避障性、路径平滑性、规划有效性就成为了全局路径规划算法的核心研究内容。首先根据算法的智能程度,将移动机器人的全局路径规划算法分为传统全局路径规划算法和仿生智能全局路径规划算法,并深入阐述了实际应用更为广泛的多目标路径规划算法,然后介绍了当前每种算法的几种典型的优化改进方法,并对其优化改进后的算法的优缺点进行了分析总结,最后对全局路径算法的未来发展趋势进行了展望,指出全局路径规划算法将向优化已有常规算法路径规划的性能、多种算法优势融合、复杂环境中动态避障、适应多样化环境的地图表示方法这4方面发展。
    参考文献 | 相关文章 | 多维度评价
    3. 面向高维连续行动空间的蒙特卡罗树搜索算法
    刘天星, 李伟, 许铮, 张立华, 戚骁亚, 甘中学
    计算机科学    2021, 48 (10): 30-36.   DOI: 10.11896/jsjkx.201000129
    摘要574)      PDF(pc) (2138KB)(1488)    收藏
    蒙特卡罗树搜索(Monte Carlo Tree Search,MCTS)在低维离散控制任务中取得了巨大的成功。然而,在现实生活中许多任务需要在连续动作空间进行行动规划。由于连续行动空间涉及的行动集过大,蒙特卡罗树搜索很难在有限的时间内从中筛选出最佳的行动。作为蒙特卡罗树搜索的一个变种,KR-UCT(Kernel Regression UCT)算法通过核函数泛化局部信息的方式提高了蒙特卡罗树搜索在低维连续动作空间的模拟效率。但是在与环境交互的过程中,为了找出最佳的行动,KR-UCT在每一步都需要从头进行大量的模拟,这使得KR-UCT算法仅局限于低维连续行动空间,而在高维连续行动空间难以在有限的时间内从行动空间筛选出最佳的行动。在与环境交互的过程中,智能体可以获得环境反馈回来的信息,因此,为了提高KR-UCT算法在高维行动空间的性能,可以使用这些反馈信息剪枝树搜索过程来加快KR-UCT算法在高维连续行动空间的模拟效率。基于此,文中提出了一种基于策略-价值网络的蒙特卡罗树搜索方法(KR-UCT with Policy-Value Network,KRPV)。该方法使用策略-价值网络保存智能体与环境之间的交互信息,随后策略网络利用这些信息帮助KR-UCT算法剪枝KR-UCT搜索树的宽度;而价值网络则通过泛化不同状态之间的价值信息对蒙特卡罗树搜索在深度上进行剪枝,从而提高了KR-UCT算法的模拟效率,进而提高了算法在高维连续行动任务中的性能。在OpenAI gym中的4个连续控制任务上对KRPV进行了评估。实验结果表明,该方法在4个连续控制任务上均优于KR-UCT,特别是在6维的HalfCheetah-v2任务中,使用KRPV算法所获得的奖励是KR-UCT的6倍。
    参考文献 | 相关文章 | 多维度评价
    4. 基于情节经验回放的深度确定性策略梯度方法
    张建行, 刘全
    计算机科学    2021, 48 (10): 37-43.   DOI: 10.11896/jsjkx.200900208
    摘要488)      PDF(pc) (2351KB)(977)    收藏
    强化学习中的连续控制问题一直是近年来的研究热点。深度确定性策略梯度(Deep Deterministic Policy Gradients,DDPG)算法在连续控制任务中表现优异。DDPG算法利用经验回放机制训练网络模型,为了进一步提高经验回放机制在DDPG算法中的效率,将情节累积回报作为样本分类依据,提出一种基于情节经验回放的深度确定性策略梯度(Deep Determinis-tic Policy Gradient with Episode Experience Replay,EER-DDPG)方法。首先,将经验样本以情节为单位进行存储,根据情节累积回报大小使用两个经验缓冲池分类存储。然后,在网络模型训练阶段着重对累积回报较大的样本进行采样,以提升训练质量。在连续控制任务中对该方法进行实验验证,并与采取随机采样的DDPG方法、置信区域策略优化(Trust Region Policy Optimization,TRPO)方法以及近端策略优化(Proximal Policy Optimization,PPO)方法进行比较。实验结果表明,EER-DDPG方法有更好的性能表现。
    参考文献 | 相关文章 | 多维度评价
    5. 一种基于图的文档关键词和摘要协同抽取方法研究
    毛湘科, 黄少滨, 余秦勇
    计算机科学    2021, 48 (10): 44-50.   DOI: 10.11896/jsjkx.200900082
    摘要352)      PDF(pc) (1767KB)(722)    收藏
    关键词提取和摘要抽取的目的都是从原文档中选择关键内容并对原文档的主要意思进行概括。评价关键词和摘要抽取质量的好坏主要看其能否对文档的主题进行良好的覆盖。在现有基于图模型的关键词提取和摘要抽取方法中,很少涉及到将关键词提取和摘要抽取任务协同进行的,而文中提出了一种基于图模型的方法进行关键词提取和摘要的协同抽取。该方法首先利用文档中词、主题和句子之间的6种关系,包括词和词、主题和主题、句子和句子、词和主题、主题和句子、词和句子,进行图的构建;然后利用文档中词和句子的统计特征对图中各顶点的先验重要性进行评价;接着采用迭代的方式对词和句子进行打分;最后根据词和句子的得分,得到关键词和摘要。为验证所提方法的效果,文中在中英文数据集上进行关键词提取和摘要抽取实验,发现该方法不管是在关键词提取还是摘要抽取任务上都取得了良好的效果。
    参考文献 | 相关文章 | 多维度评价
    6. 多源异构用户生成内容的融合向量化表示学习
    纪南巡, 孙晓燕, 李祯其
    计算机科学    2021, 48 (10): 51-58.   DOI: 10.11896/jsjkx.200900194
    摘要285)      PDF(pc) (3514KB)(751)    收藏
    随着移动网络和APPs的发展,包含用户评价、标记、打分、图像和视频等多源异构数据的用户生成内容(User Generated Contents,UGC)成为提高个性化服务质量的重要依据,对这些数据的融合和表示学习成为其应用的关键。对此,提出一种面向多源文本和图像的融合表示学习。采用Doc2vec和LDA模型,给出多源文本的向量化表示,采用深度卷积网络获取与评价文本相关的图像特征;给出多源文本向量化表示的多策略融合机制,以及文本和图像卷积融合的表示学习。将所提算法应用于亚马逊含UGC内容的商品数据集上,基于UGC向量化表示物品的分类准确率说明了该算法的可行性和有效性。
    参考文献 | 相关文章 | 多维度评价
    7. 基于单词-章节关联的科技论文摘要
    付颖, 王红玲, 王中卿
    计算机科学    2021, 48 (10): 59-66.   DOI: 10.11896/jsjkx.200900180
    摘要366)      PDF(pc) (3789KB)(535)    收藏
    为科技论文生成自动摘要,这能够帮助作者更快撰写摘要,是自动文摘的研究内容之一。相比于常见的新闻文档,科技论文具有文档结构性强、逻辑关系明确等特点。目前,主流的编码-解码的生成式文摘模型主要考虑文档的序列化信息,很少深入探究文档的篇章结构信息。为此,文中针对科技论文的特点,提出了一种基于“单词-章节-文档”层次结构的自动摘要模型,利用单词与章节的关联作用增强文本结构的层次性和层级之间的交互性,从而筛选出科技论文的关键信息。除此之外,该模型还扩充了一个上下文门控单元,旨在更新优化上下文向量,从而能更全面地捕获上下文信息。实验结果表明,提出的模型可有效提高生成文摘在ROUGE评测方法上的各项指标性能。
    参考文献 | 相关文章 | 多维度评价
    8. 具有博弈概率选择的多子群粒子群算法
    田梦丹, 梁晓磊, 符修文, 孙媛, 李章洪
    计算机科学    2021, 48 (10): 67-76.   DOI: 10.11896/jsjkx.200800128
    摘要204)      PDF(pc) (5821KB)(578)    收藏
    针对粒子群算法在求解复杂多峰函数时存在早熟、易陷入局部最优、全局收敛性能差等缺陷,考虑种群结构、多模式学习和个体间博弈等因素,提出了具有博弈概率选择的多子群粒子群算法。该算法从改善群体多样性、提升个体搜索能力的角度出发,构建了动态多种群结构,并针对每个子群构建不同的学习策略(极端学习、复合学习、邻域学习和随机学习),子群间进行最优信息共享,形成异构多子群的多源学习方式;将进化博弈思想引入群体搜索过程中,个体通过收益矩阵和扎根概率进行策略概率选择,进入适合个体能力提升的子群进行学习。基于12个标准测试函数,针对算法中重要参数子群规模L的取值进行了组合实验,结果表明L取值N/2或N/3时,种群适应度分布及中位值具有明显优势;针对算法性能测试,利用不同维度下的标准测试函数与7种同类型算法进行对比实验,实验结果显示,改进算法在最优值、求解稳定性及收敛特征上整体优于对比算法,说明多源学习和博弈概率选择策略可以有效改善粒子群算法的性能。
    参考文献 | 相关文章 | 多维度评价
    9. 基于深度神经网络和自注意力机制的医学实体关系抽取
    张世豪, 杜圣东, 贾真, 李天瑞
    计算机科学    2021, 48 (10): 77-84.   DOI: 10.11896/jsjkx.210300271
    摘要329)      PDF(pc) (1514KB)(865)    收藏
    随着医学信息化的推进,医学领域已经积累了海量的非结构化文本数据,如何从这些医学文本中挖掘出有价值的信息,是医学行业和自然语言处理领域的研究热点。随着深度学习的发展,深度神经网络被逐步应用到关系抽取任务中,其中“recurrent+CNN”网络框架成为了医学实体关系抽取任务中的主流模型。但由于医学文本存在实体分布密度较高、实体之间的关系交错互联等问题,使得 “recurrent+CNN”网络框架无法深入挖掘医学文本语句的语义特征。基于此,在“recurrent+CNN”网络框架基础之上,提出一种融合多通道自注意力机制的中文医学实体关系抽取模型,包括:1)利用BLSTM捕获文本句子的上下文信息;2)利用多通道自注意力机制深入挖掘句子的全局语义特征;3)利用CNN捕获句子的局部短语特征。通过在中文医学文本数据集上进行实验,验证了该模型的有效性,其精确率、召回率和F1值与主流的模型相比均有提高。
    参考文献 | 相关文章 | 多维度评价
    10. 基于数据增强的中文隐式篇章关系识别方法
    王体爽, 李培峰, 朱巧明
    计算机科学    2021, 48 (10): 85-90.   DOI: 10.11896/jsjkx.200800115
    摘要275)      PDF(pc) (1439KB)(797)    收藏
    由于缺乏显式连接词,隐式篇章关系识别是一个具有挑战性的任务。文中提出了一种结合主动学习和多任务学习来间接扩充隐式篇章关系训练数据的隐式篇章关系识别方法,旨在在增强训练数据的同时尽量少地引入伪隐式篇章关系数据中的噪声。首先,基于BERT模型通过主动学习方法的分类不确定性来选择部分显式篇章关系样本;然后,移除显式篇章关系数据中的显式连接词作为伪隐式篇章关系数据;最后,采用多任务学习方法使伪隐式篇章关系数据有助于隐式篇章关系识别。在中文篇章树库(CDTB)上进行的实验的结果显示,相比基准模型,所提方法在宏平均F1、微平均F1值上均得到了提高。
    参考文献 | 相关文章 | 多维度评价
    11. 融合BERT和记忆网络的实体识别
    陈德, 宋华珠, 张娟, 周泓林
    计算机科学    2021, 48 (10): 91-97.   DOI: 10.11896/jsjkx.200900015
    摘要495)      PDF(pc) (2056KB)(845)    收藏
    实体识别是信息提取的子任务,传统实体识别模型针对人员、组织、位置名称等类型的实体进行识别,而在现实世界中必须考虑更多类别的实体,需要细粒度的实体识别。同时,BiGRU等传统实体识别模型无法充分利用更大范围内的全局特征。文中提出了一种基于命名记忆网络和BERT的实体识别模型,记忆网络模块能够记忆更大范围的特征,BERT语言预训练模型能进行更好的语义表示。对水泥熟料生产语料数据进行实体识别,实验结果表明,所提方法能够识别实体且较其他传统模型更具优势。为了进一步验证所提模型的性能,在CLUENER2020数据集上进行实验,结果表明,在BiGRU-CRF模型的基础上使用BERT和记忆网络模块进行优化是能够提高实体识别效果的。
    参考文献 | 相关文章 | 多维度评价
    12. 基于多粒度粗糙直觉犹豫模糊集的最优粒度选择方法
    薛占熬, 孙冰心, 侯昊东, 荆萌萌
    计算机科学    2021, 48 (10): 98-106.   DOI: 10.11896/jsjkx.200800074
    摘要305)      PDF(pc) (1373KB)(466)    收藏
    为了对含有多属性的直觉犹豫模糊决策信息系统进行约简,获取最优粒度,运用多粒度粗糙集处理直觉犹豫模糊决策信息系统中的不确定信息,并对多粒度粗糙直觉犹豫模糊集的最优粒度选择方法进行了研究。首先,在直觉犹豫模糊集的基础上引入属性信息,给出粗糙直觉犹豫模糊集的概念,提出乐观、悲观多粒度粗糙直觉犹豫模糊集的下、上近似这4种模型,且研讨了它们的性质。其次,主要定义了基于悲观多粒度粗糙直觉犹豫模糊集下近似的粒度质量相似度和内、外粒度重要度的计算公式,设计了其最优粒度选择算法。最后,通过葡萄酒测评的案例,分别基于乐观、悲观多粒度粗糙直觉犹豫模糊集的下、上近似这4种情况,计算出最优粒度并进行了分析,验证了该算法在直觉犹豫模糊决策信息系统中的约简是有效的。
    参考文献 | 相关文章 | 多维度评价
    13. 基于多模态表示学习的阿尔兹海默症诊断算法
    樊连玺, 刘彦北, 王雯, 耿磊, 吴骏, 张芳, 肖志涛
    计算机科学    2021, 48 (10): 107-113.   DOI: 10.11896/jsjkx.200900178
    摘要343)      PDF(pc) (2407KB)(773)    收藏
    阿尔茨海默症是一种典型的涉及多种致病因素的神经系统退行性疾病。然而,阿尔茨海默症的病因尚不明确,病程不可逆转,且无治愈方法,因此其早期诊断和治疗一直是人们关注的重点。受试者的神经影像数据对于该疾病的诊断具有重要的辅助作用,而结合多个模态的数据可进一步提高诊断效果。目前,联合该疾病的多模态数据进行辅助诊断逐渐成为一个新兴的研究领域。在此提出了一种基于自编码器的多模态表示学习方法,用于阿尔茨海默症的诊断。首先将多个模态的数据进行初步融合,得到初级的共同表示;然后将其送入自编码器网络,学习隐空间中的共同表示;最后对隐空间中的共同表示进行分类,得到疾病的诊断结果。在国际公开ADNI数据集上,所提算法对患病和健康受试者的诊断准确率达到88.9%,与同类算法相比取得了最好的诊断效果。实验结果验证了所提算法对阿尔茨海默症诊断的有效性。
    参考文献 | 相关文章 | 多维度评价
    14. 基于堆叠自动编码器的miRNA-疾病关联预测方法
    刘丹, 赵森, 颜志良, 赵静, 王会青
    计算机科学    2021, 48 (10): 114-120.   DOI: 10.11896/jsjkx.200900169
    摘要228)      PDF(pc) (2967KB)(725)    收藏
    作为一类小的非编码RNA,miRNA的异常调控与人类疾病的发生和发展密切相关,研究miRNA与疾病的关联对于了解人类疾病致病机制具有重要意义。机器学习方法被广泛应用于miRNA-疾病关联预测,然而现有方法仅仅考虑了miRNA与疾病相似性网络信息,忽略了相似性网络的拓扑结构。因此,文中提出基于堆叠自动编码器的miRNA-疾病关联预测模型SAEMDA,该模型采用重启随机游走获取miRNA与疾病相似性网络的拓扑结构特征,用堆叠自动编码器提取miRNA与疾病的抽象低维特征,将得到的低维特征输入深度神经网络进行miRNA-疾病关联预测。SAEMDA模型在5折交叉验证中取得了较好的结果,并在结肠癌和肺癌两个案例中进行了验证。在结肠癌的案例中,此模型预测的前50个miRNA-疾病关联中的45个miRNA在数据库中得到了验证;在肺癌的案例中,排名前50的miRNA均在数据库中得到了验证。
    参考文献 | 相关文章 | 多维度评价
    15. 基于U-Net++的心电信号识别分类研究
    杨春德, 贾竹, 李欣蔚
    计算机科学    2021, 48 (10): 121-126.   DOI: 10.11896/jsjkx.200700103
    摘要246)      PDF(pc) (3062KB)(1062)    收藏
    探索高效、快速、精准的心电信号识别分类算法是心电诊断的难点。基于心电片段的识别分类更贴合临床应用。基于此,文中将改进的深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Networks,DCGAN)用于数据扩充,将优化的一维U-Net++用于心律不齐的片段信号识别。连续截取MIT-BIH数据库中1 200个采样点的心电片段作为实验数据集,以每条片段记录中心拍标签次数出现最多的类型作为整段记录的标签。再将优化的一维U-Net++作为DCGAN结构的生成器实现部分数据扩充,以解决数据不平衡的问题。在原始心电信号未经过任何预处理以及生成的扩充数据用于完成小波阈值去噪的情况下,优化的一维U-Net++模型对于正常、室性早搏、左束支阻滞、右束支阻滞4类不同的心电类型训练集的准确率能够达到98.10%,且对于测试集的精准率、召回率和F1值等指标均有较好的结果。在相同实验数据集下,优化的一维U-Net++模型比U-Net模型的准确率提高了1.05%;在相同实验参数的条件下,与欠采样数据对比,经DCGAN数据扩充后的数据集实验模型的准确率提高了0.85%。
    参考文献 | 相关文章 | 多维度评价
    16. 基于图卷积神经网络的药物靶标作用关系预测方法
    高创, 李建华, 季秀怡, 朱程龙, 李诗良, 李洪林
    计算机科学    2021, 48 (10): 127-134.   DOI: 10.11896/jsjkx.200700068
    摘要492)      PDF(pc) (2247KB)(1166)    收藏
    药物-靶标作用关系预测在药物研发以及药物重定位中扮演着重要角色,但现有的机器学习方法在正负样本高度不平衡的数据上仍存在预测能力不足的问题。为此,提出一种基于图卷积神经网络的药物靶标作用关系预测方法。该方法首先构造一个结合多种药物(靶标)相关信息的异质信息网络,然后采用图卷积神经网络在此异质信息网络上学习得到能精确表达每个节点拓扑特征及邻居特征信息的低维向量表征,最后利用这些向量信息通过向量空间投影预测节点间概率的评分。在DrugBank_FDA和Yammanishi_08数据集上进行的药物-靶标作用关系预测的对比实验中,所提方法的AUPR(Area Under the Precision-Recall Curve)值都优于其他4种方法,并且在较大型数据集上也有较好的表现。实验结果表明,所提方法提高了样本高度不平衡时的药物-靶标作用关系预测性能;同时在生物药物数据库上的实验也验证了所提方法所发现的未知药物-靶标作用关系的有效性。
    参考文献 | 相关文章 | 多维度评价
    17. 船舶虚拟制造中狼群优化卷积神经网络的控制应用
    肖世龙, 吴迪, 唐超尘, 神显豪, 张德育
    计算机科学    2021, 48 (10): 135-139.   DOI: 10.11896/jsjkx.200900183
    摘要284)      PDF(pc) (1691KB)(462)    收藏
    为了优化虚拟工业制造的控制策略,采用狼群优化的卷积神经网络算法进行虚拟工业制造控制研究。首先根据虚拟工业制造任务和资源数据,建立任务-资源列表,并结合单位矩阵对任务-资源列表进行稀疏化,形成虚拟制造单元;接着建立卷积神经网络虚拟制造控制模型,并采用狼群算法对权重和偏置进行优化;最后以所有任务的平均制造时间为目标函数,对虚拟制造单元进行训练优化。船舶主机虚拟制造实验证明,相比于常用的控制算法,通过合理设置卷积核池化尺寸的狼群优化卷积神经网络算法能够获得平均制造时间的最优解。
    参考文献 | 相关文章 | 多维度评价
    首页 | 前页| 后页 | 尾页 第1页 共1页 共17条记录