Computer Science ›› 2014, Vol. 41 ›› Issue (6): 309-313.doi: 10.11896/j.issn.1002-137X.2014.06.062

Previous Articles     Next Articles

Hyperspectral Band Selection Method Based on Conjugate Class Separability and Grey Decision

ZHANG Hai-tao,WANG He-qiao,MENG Xiang-yu and WU Wen-bo   

  • Online:2018-11-14 Published:2018-11-14

Abstract: As researchers’ demand for the quality of the spectral information in hyperspectral images gradually increases,the characteristics of hyperspectral images impedes the further information extraction to the images.The existing single band selection method can not fully consider the criterias about "information content,correlativity,class separability",and the results are inevitably restricted by other index measurements.Using the quality of grey system theory and taking the small sample,small information and uncertainty system as research subjects can do the grey incidence decision on the basis of subspace partition,overcoming the independence and incompatibility of the single-index measure.Therefore,aiming at the growing demand about ensuring the separability of conjugate class,this paper put forward a band selection method which can synthetically consider the results of other single band selection mehtods with grey incidence decision.Finally,an experiment was made and it was compared with common fusion methods.

Key words: Band selection,Subspace partition,Bhattacharyya distance,Grey incidence decision

[1] 邵涛.基于光谱信息的高光谱图像目标识别方法的研究[D].哈尔滨:哈尔滨工业大学,2010
[2] 赵冬,赵光恒.基于改进遗传算法的高光谱图像波段选择[J].中国科学院研究生院学报,2009,26(6):795-802
[3] Patel N,Kaushal B.Classification of features selected throughOptimum Index Factor (OIF) for improving classification accuracy[J].Journal of Forestry Research,2011,21(1):99-105
[4] Ziga S,Bostjan L,Franjo P.Groupwise registration of multimodal images by an efficient joint entropy minimization scheme[J].IEEE Transactions on Image Processing,2012,21(5):2546-2558
[5] 苏红军,杜培军,盛业华.高光谱影像波段选择算法研究 [J].计算机应用研究,2008,25(4):1093-1096
[6] 韩瑞梅,杨敏华.一种改进的高光谱遥感数据波段选择方法的研究[J].测绘与空间地理信息,2010,33(3):137-139
[7] 吴昊,李士进,林林,等.多策略结合的高光谱图像波段选择新方法[J].计算机科学与探索,2010,4(5):464-472
[8] 于绍慧,张玉钧,赵南京,等.基于矩阵模式的高光谱波段选择方法[J].光电工程,2012,39(6):71-75
[9] 苏红军,盛业华,杜培军.自动子空间划分在高光谱影像波段选择中的应用[J].地球信息科学,2007,9(4):123-128
[10] Gu Yan-feng,Zhang Ye.Unsupervised subspace linear spectral mixture analysis for hyperspectral images[C]∥Proceedings of International Conference on Image Processing.2003:801-804
[11] Novovicova J,Somol P,Haindl M, et al.Conditional mutual information based feature selection for classification task[C]∥LNCS 4756:12th Iberoamericann Congress on Pattern Recognition(CIARP2007).Valparaiso,Chile,November 2007:417-426
[12] 杨金红.高光谱遥感数据最佳波段选择方法研究[D].南京:南京信息工程大学,2005
[13] Wang Xiu-yan,Li Cui-fang,Li Zong-shuai,et al.Research of airfield lighting insulation resistance prediction based on gray system theory[J].Applied Mechanics and Materials,2012,263-266:1279-1284
[14] Hao Yong-hong,Jim Y,Gao Zong-qiang,et al.A gray systemmodel for studying the response to climatic change:The Liulin karst springs,China[J].Journal of Hydrology,2006,328(3/4):668-676
[15] 李红建.灰色系统理论在遥感图像处理中的应用[J].河北农业科学,2009,13(4):156-158,1
[16] 罗党,王洁方.灰色决策理论与方法[M].北京:科学出版社,2012
[17] 刘思峰,等.灰色系统理论及其应用(5版)[M].北京:科学出版社,2010
[18] 朱颢东,钟勇.基于粗糙集和灰色关联度的综合性特征选择[J].计算机工程与应用,2009,45(35):6-9
[19] 向昌盛,张林峰.灰色理论和马尔可夫相融合的粮食产量预测模型[J].计算机科学,2013,40(2):245-248
[20] 蒋盛益,郑琪,张倩生.基于聚类的特征选择方法[J].电子学报,2008,36(12A):157-160

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!