Computer Science ›› 2015, Vol. 42 ›› Issue (7): 270-275.doi: 10.11896/j.issn.1002-137X.2015.07.058

Previous Articles     Next Articles

Multi-label Text Classification Based on Robust Fuzzy Rough Set Model

ZHANG Jing, LI De-yu, WANG Su-ge and LI Hua   

  • Online:2018-11-14 Published:2018-11-14

Abstract: Owing to the uncertainty of multi-label data and noise data,a novel multi-label robust fuzzy rough classification model was proposed,which is an extension of k-mean robust statistics fuzzy rough classification model that is used to solve the single label classification problem.First,for each unlabeled instance,the membership with respect to each label was obtained by similarity measures.Second,according to the membership,the degree of correlation was defined.Finally,an appropriate threshold was given to demarcate the correlated and uncorrelated labels. The experimental results on three benchmark multi-label datasets and one actual multi-label datasets indicate that the proposed model is superior to ML-kNN and rank-SVM across six popular multi-label evaluation metrics.

Key words: Fuzzy rough set,k-mean robust statistics,Membership,Multi-label learning

[1] Schapire R,Singer Y.BoosTexter:A boosting-based system for text categorization[J].Machine Learning,2000,39(2):135-168
[2] 郝虹,计华,张化祥,等.基于I2C距离和标记相关性的多标记场景分类[J].计算机科学,2014,41(1):88-90 Hao Hong,Ji Hua,Zhang Hua-xiang,et al.Multi-label scene classification based on I2C distance and label dependency[J].Computer Science,2014,41(1):88-90
[3] Trohidis K,Tsoumakas G,Kalliris G,et al.Multi-label classification of music into emotions[C]∥Proceeding of 9th International Conference on Music Information Retrieval(ISMIR).Philadelphia,PA,USA,2008:325-330
[4] Elisseeff A,Weston J.A kernel method for multi-labelled classification[C]∥Advances in Neural Information Processing Systems 14.Cambridge,MA:MIT Press,2002:681-687
[5] Tsoumakas G,Katakis I.Multi-Label Classification:An Overview[J].International Journal of Data Warehousing and Mi-ning,2007,3(3):1-13
[6] Zhang Min-ling,Zhou Zhi-hua.A Review on Multi-Label Lear-ning Algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1819-1837
[7] Pawlak Z.Rough Sets[J].International Journal of Computerand Information Sciences,1982,11(5):341-356
[8] Dubois D,Prade H.Rough fuzzy sets and fuzzy rough sets[J].International Journal of General Systems,1990,17:191-208
[9] Hu Qing-hua,Zhang Lei,An Shuang,et al.On robust fuzzyrough set models[J].IEEE Transactions on Fuzzy systems,2012,20(4):636-651
[10] McCallum A.Multi-label text classification with a mixture modeltrained by EM[C]∥Proc of Working Notes of the AAAI’99 Workshop on Text Learning.Menlo Park,CA:AAAI Press,1999
[11] Ueda N,Saito K.Parametric mixture models for multi-label text[C]∥Advances in Neural Information Processing Systems 15.Cambridge,MA:MIT Press,2003:721-728
[12] Zhang Min-ling,Zhou Zhi-hua.Multi-label neural networkswith applications to functional genomics and text categorization[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351
[13] Zhang Min-ling,Zhou Zhi-hua.ML-kNN:A lazy learning ap-proach to muti-label learning[J].Pattern Recognition,2007,40(7):2038-2048
[14] Comité F D,Gilleron R,Tommasi M.Learning multi-label alternating decision tree from texts and data[C]∥Lecture Notes in Computer Science 2734.Berlin:Springer,2003:35-49
[15] Yeung D S,Chen D G,Tsang E C C,et al.On the Generalization of Fuzzy Rough Sets[J].IEEE Transactions on Fuzzy Systems,2005,13(3):343-361
[16] 郑伟,王朝坤,刘璋,等.一种基于随机游走模型的多标记分类算法[J].计算机学报,2010,3(8):1418-1426 Zheng Wei,Wang Chao-kun,Liu Zhang,et al.A multi-label classification algorithm based on random walk model[J].Chinese Journal of Computers,2010,3(8):1418-1426
[17] 广凯,潘金贵.一种基于向量夹角的k近邻多标记文本分类算法[J].计算机科学,2008,35(4):205-207 Guang Kai,Pan Jin-gui.An kNN algorithm based on vector angle for multi-label text categorization[J].Computer Science,2008,5(4):205-207
[18] Tsoumakas G,Katakis I,Vlahavas I.Mining Multi-label Data[M]∥Data Ming and Knowledge Discovery Handbook.Berlin:Springer,2010:667-685

No related articles found!
Full text



No Suggested Reading articles found!