Computer Science ›› 2016, Vol. 43 ›› Issue (7): 224-229.doi: 10.11896/j.issn.1002-137X.2016.07.040

Previous Articles     Next Articles

Taxonomy Construction Based on User Self-describing Tags

LIU Su-qi, BAI Guang-wei and SHEN Hang   

  • Online:2018-12-01 Published:2018-12-01

Abstract: Knowledge on schema level is vital for the development of semantic Web.However,the number of schema knowledge is limited in current linking open data (LOD).To optimize the issue,this paper proposed an approach for constructing a taxonomy using user self-describing tags in social network.This approach first designs a tag blocking algorithm based on search engine to partition tags into the same block,which describes the same topic.Then,it uses a label propagation algorithm based on the semi-supervised learning to detect hypernym relation between tags in the same block.Finally,it applies a greedy algorithm based on heuristic rules to construct a taxonomy.A large scale and high-quality taxonomy can be constructed after applying the proposed approach in social Web sites.The experimental results show that,compared with the existing related work,the proposed approach performs better in terms of precision,recall and F-score.

Key words: Knowledge on schema level,User self-describing tags,Taxonomy,Label propagation

[1] Linking Open Data.[2014-10-11].
[2] Auer S,Bizer C,Kobilarov G,et al.DBpedia:A nucleus for aWeb of open data[C]∥Proceedings of the 6th International Semantic Web Conference.2007:722-735
[3] Suchanek F M,Kasneci G,Weikum G.Yago:A large ontology from wikipedia and wordnet[J].Journal of Web Semantics:Science,Services and Agents on the World Wide Web,2008,6(3):203-217
[4] Bollacker K,Evans C,Paritosh P,et al.Freebase:a collabora-tively created graph database for structuring human knowledge[C]∥Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.2008:1247-1250
[5] Bizer C,Lehmann J,Kobilarov G,et al.Dbpedia-a crystallization point for the Web of data[J].Journal of Web Semantics:Science,Services and Agents on the World Wide Web,2009,7(3):154-165
[6] Tang J,Leung H,Luo Q,et al.Towards ontology learning form folksonomies[C]∥Proceedings of the 21st International Joint Conference on Artificial Intelligence.2009:2089-2094
[7] Liu Kai-peng,Fang Bin-xing.Ontology Induction Based on So-cial Annotations[J].Chinese Journal of Computers,2010,33(10):1823-1834(in Chinese) 刘凯鹏,方滨兴.基于社会性标注的本体学习方法[J].计算机学报,2010,33(10):1823-1834(下转第239页)(上接第229页)
[8] Zhou M,Bao S,Wu X,et al.An unsupervised model for exploring hierarchical semantics from social annotations[C]∥Proceedings of the 6th International Semantic Web Conference.2007:680-693
[9] Wu W,Li H,Wang H,et al.Probase:A probabilistic taxonomy for text understanding[C]∥Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data.2012:481-492
[10] Hearst M A.Automatic acquisition of hyponyms from large text corpora[C]∥Proceedings of the 14th Conference on Computational Linguistics.1992:539-545
[11] Ponzetto S P,Strube M.WikiTaxonomy:A Large Scale Know-ledge Resource[C]∥Proceedings of the 18th European Confe-rence on Artificial Intelligence.2008,178:751-752
[12] Wu F,Weld D S.Automatically refining the wikipedia infoboxontology[C]∥Proceedings of the 17th International Conference on World Wide Web.2008:635-644
[13] Fellbaum C,et al.WordNet:An electronic lexical database[M].MIT Press,1998
[14] Wang H,Wu T,Qi G,et al.On publishing Chinese linked open schema[C]∥Proceedings of the 13th International Semantic Web Conference.2014:293-308
[15] Cilibrasi R L,Vitanyi P M B.The google similarity distance[J].IEEE Transactions on Knowledge and Data Engineering,2007,19(3):370-383
[16] 百度知道.[2014-10-11].
[17] Zhu X,Ghahramani Z.Learning from labeled and unlabeled data with label propagation[R].Technical Report CMU-CALD-02-107,Carnegie Mellon University,2002
[18] Gabrilovich E,Markovitch S.Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis[C]∥Procee-dings of the 20th International Joint Conference on Artificial Intelligence.2010:1606-1611
[19] 网易微博.[2014-10-11].
[20] Zhou Jin,Chen Chao,Yu Neng-hai.Tag Clustering AlgorithmUsing Object-based Feature Vector[J].Journal of Chinese Computer Systems,2012,33(3):525-530(in Chinese) 周津,陈超,俞能海.采用对象特征向量表示法的标签聚类算法[J].小型微型计算机系统,2012,33(3):525-530
[21] Fernández-Delgado M,Cernadas E,Barro S,et al.Do we need hundreds of classifiers to solve real world classification problems?[J].The Journal of Machine Learning Research,2014,15(1):3133-3181

No related articles found!
Full text



No Suggested Reading articles found!