Computer Science ›› 2016, Vol. 43 ›› Issue (Z6): 130-133.doi: 10.11896/j.issn.1002-137X.2016.6A.031

Previous Articles     Next Articles

Optimization Method of Seabed Sediment Texture Feature Based on Genetic Algorithm

LI Wen-li, GAO Hong-wei, JI Da-xiong and LI Yan   

  • Online:2018-12-01 Published:2018-12-01

Abstract: In order to improve autonomous sensing perception of underwater vehicle on classification of seabed sediments and solve the problem of features redundancy,using genetic algorithm to optimize texture features of seabed sediments was studied.In the background of the classification and identification of seabed sediment based on a variety of seabed sediment visual texture features that are extracted based on gray level co-occurrence matrix and fractal theory,the reduction of feature dimension has been realized by using the genetic algorithm to optimize the texture features,and the texture features after dimension reduction are trained by a self-organizing mapping neural network as inputs for vi-sual classification of seabed sediments,improving the environmental awareness of underwater vehicle on underwater operation.The experimental results show that with respect to the texture features that are not optimized,optimized texture features have better classification effect in seabed sediment classification and recognition.

Key words: Seabed sediments,Genetic algorithm,Texture feature analysis,Gray level co-occurrence matrix,Fractal theo-ry,Self-organizing map

[1] 牛京考.大洋多金属结核开发研究述评[J].中国锰业,2002,0(2):20-26
[2] 封锡盛,李一平,徐红丽,等.下一代海洋机器人—写在人类创造下潜深度世界纪录10912米50周年之际[J].机器人,2011,3(1):113-118
[3] 唐旭东,朱炜,庞永杰,等.水下机器人光视觉目标识别系统[J].机器人,2009,31(2):171-178
[4] Kia C,Arshad M R.Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation[J].International Journal of Advanced Robotic Systems,2005,2(3):245-250
[5] Armstrong R A,Singh H,Torres J,et al.Characterizing thedeep insular shelf coral reef habitat of the Hind Bank marine conservation district (US Virgin Islands) using the Seabed autonomous underwater vehicle[J].Continental Shelf Research,2006,26(2):194-205
[6] Singh H,Armstrong R,Gilbes F,et al.Imaging coral I:imaging coral habitats with the SeaBED AUV[J].Subsurface Sensing Technologies and Applications,2004,5(1):25-42
[7] 郝颖明,吴清潇,周船,等.基于单目视觉的水下机器人悬停定位技术与实现[J].机器人,2006,28(6):656-661
[8] Gracias N R,Van Der Zwaan S,Bernardino A,et al.Mosaic-based navigation for autonomous underwater vehicles[J].IEEE Journal of Oceanic Engineering,2003,28(4):609-624
[9] Rzhanov Y,Linnett L M,Forbes R.Underwater video mosaicing for seabed mapping[C]∥Proceedings 2000 International Conference on Image Processing,2000.IEEE,2000:224-227
[10] 高程程,惠晓威.基于灰度共生矩阵的纹理特征提取[J].计算机系统应用,2010,19(6):195-198
[11] 唐秋华,李杰,周兴华,等.济州岛南部海域海底声呐图像分析与声学底质分类[J].海洋学报,2014,36(7):133-141
[12] Li Y,Xia C L,Huang Y,et al.Visual Features Extraction and Types Classification of Seabed Sediment[M]∥7th International Conference on Intelligent Robotics and Applications.Springer,2015:153-160
[13] Li Y,Xia C L,Huang Y,et al.A Novel Visual Classification Method of Seabed Sediments[C]∥Oceans-St.John’s.2014:1-4
[14] 冯莉,李满春,李飞雪.基于遗传算法的遥感图像纹理特征选[J]南京大学学报(自然科学),2008,4(3):310-319
[15] 陈卫东,刘素华.基于遗传算法的图像特征选择[J].计算机工程与应用,2007,43(28):78-80
[16] 刘颖,谷延锋,张晔.基于改进遗传算法的超光谱图像特征选择方法[J].哈尔滨工业大学学报,2005,37(6):733-735
[17] 蒋培.基于共同进化遗传算法的机器学习[J].湖南师范大学(自然科学学报),2004,27(3):33-38
[18] Haralick R M,Shanmugam K.Texture features for image classification[J].IEEE Transactions on Systems,Man and Cyberne-tics,1973,3(6):610-621
[19] Mandelbrot B B.The Fractal Geometry of Nature[M].New-York:Wh Freeman,1982
[20] Russel,et al.Dimension of strange attractors[J].Physical Re-view Letters,1980,45(14):1175-1178
[21] Tricot C.Curves and fractal dimension Springer[M].Heidel-berg:Springer,1995
[22] Sarkar N,Chaudhuri B B.An efficient differential box-counting approach to compute fractal dimension of image[J].IEEE Trans.Syst.Man.Cybern.A,1994,24(1):115-120
[23] 陈果,邓堰.遗传算法特征选取中的几种适应度函数构造新方法及其应用[J].机械科学与技术,2011,30(1):124-132
[24] Kohonen T.Self-organized formation of topologically correctfeature maps[J].Biological Cybernetics,1982,43(1):59-69

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!