Computer Science ›› 2017, Vol. 44 ›› Issue (9): 88-92.doi: 10.11896/j.issn.1002-137X.2017.09.018

Previous Articles     Next Articles

Fuzzy Entropy and Uncertain Measurement in Lattice-valued Information Systems

ZHANG Xiao-yan, SANG Bin-bin and WEI Ling   

  • Online:2018-11-13 Published:2018-11-13

Abstract: In the Lattice-valued information system,the concept of knowledge rough entropy,rough set rough entropy and uncertaint measurement is introduced,and the important properties are obtained.In this paper,it is proved that the knowledge rough entropy increases monotonically when the particle of the knowledge increases and the classification of the information system becomes rough.Further,by discussing the relation between them,the rough entropy of rough sets can be more accurate to measure the degree of rough sets.These conclusions lay a theoretical foundation for the knowledge discovery of Lattice valued information systems.

Key words: Lattice-valued information system,Knowledge rough entropy,Uncertainty measure,Rough set

[1] VLACHOS L K,SERGIADIS G D.Intuitionistic fuzzy information:Applications to pattern recognition[J].Pattern Recognition Letters,2007,28(2):180-210.
[2] GRECO S,MATARAZZO B,SLOWINSKI R.A new rough set approach to multicriteria and multiattribute classificatioin[C]∥Polkowsik L,Skowron A,eds.International Conference on Rough sets and current trends in computing (RSCTC’98).1998:50-70.
[3] GRECO S,MATARAZZO B,SLOWINSKI R.Rough approxi-mation of a preference relation by dominance relation[J].Europe Journal of Operation Research,1999,117(1):63-83.
[4] GRECO S,MATARAZZO B,SLOWINSKI R.Rough set theory for multicriteria decision analysis[J].Europe Journal of Operation Research,2001,9(1):1-47.
[5] PAWLAK Z.Rough Sets[J].Communication of the ACM,1995,38(1):89-95.
[6] VLACHOS L K,SERGIADIS G D.Intuitionistic fuzzy information:Applications to pattern recognition[J].Pattern Recognition Letters,2007,28(2):180-210.
[7] ZHANG X Y,WEI L,WU W H.Attributes reduction and rules acquisition in an lattice-valued information system with fuzzy decision[J].International Journal of Machine Learning and Cybernetics, 2017,8(1):135-148.
[8] XU W H,WANG Q R,ZHANG X T.Approximation Reduction of Inconsistent Lattice-value Target Information System[J].Computer Engineering,2011,37(23):69-71.(in Chinese) 徐伟华,王巧荣,张先韬.不协调格值目标信息系统的近似约简[J].计算机工程,2011,37(23):69-71.
[9] ZHANG X Y,XU W H.Entropy of knowledge and rough set in ordered information system [J].Comper Engineering and Applications,2007,43(27):62-65.(in Chinese) 张晓燕,徐伟华.序信息系统的知识粗糙熵与粗集粗糙熵[J].计算机工程与应用,2007,43(27):62-65.
[10] XU W H,ZHANG X Y.Uncertainty Measures Based on Rough Entropy in Ordered Information Systems[J].Engineering Mathe-matics,2009,26(2):283-289.(in Chinese) 徐伟华,张晓燕.序信息系统中基于粗糙熵的不确定性度量[J].工程数学学报,2009,26(2):283-289.
[11] 王国胤.Rough集理论与知识获取[M].西安:西安交通大学出版社,2001.
[12] XU W H,ZHANG W X.Distribution Reduction in Inconsistent Information Systems Based on Dominance Relations[J].Fuzzy Systems and Mathematics,2007,21(4):124-131.(in Chinese) 徐伟华,张文修.基于偏序关系下不协调目标信息系统的分布约简[J].模糊系统与数学,2007,21(4):124-131.
[13] MI J S,WU W Z,ZHANG W X.Comparative Studies of Know-ledge Reductions in Inconsistent Systems[J].Fuzzy Systems and Mathematics,2003,7(3):54-60.(in Chinese) 米据生,吴伟志,张文修.不协调目标信息系统知识约简的比较研究[J].模糊系统与数学,2003,7(3):54-60.
[14] WANG Y,MIAO D Q,ZHOU Y J.Rough set Theory and its Application:a Survey[J].Pattern Recognition and Artificial Intelligence,1996,9(4):337-344.(in Chinese) 王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344.
[15] 张文修,梁怡,吴伟志.信息系统与知识发现[M].北京:科学出版社,2003.
[16] ZHANG W X,MI J S,WU W Z.Knowledge Reductions in Inconsistent Information Systems[J].Computers,2003,26(1):12-18.(in Chinese) 张文修,米据生,吴伟志.不协调目标信息系统的知识约简[J].计算机学报,2003,26(1):12-18.
[17] XU W H,ZHANG X Y,SU Y J,et al.Consistent Approximation Spaces Based on Dominance Relations (II) [J].Computer Science,2007,34(3):148-150.(in Chinese) 徐伟华,张晓燕,苏雅娟,等.基于偏序关系下的协调近似空间(续)[J].计算机科学,2007,34(3):148-150.
[18] 徐伟华.序信息系统与粗糙集[M].北京:科学出版社,2013.
[19] XU W H,ZHANG W X.Knowledge Reductions in Inconsistent Information Systems Based on Dominance Relations[J].Computer Science,2006,33(2):182-184.(in Chinese) 徐伟华,张文修.基于偏序关系下不协调目标信息系统的知识约简[J].计算机科学,2006,33(2):182-184.

No related articles found!
Full text



[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75 .
[2] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[3] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[4] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[5] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99 .
[6] ZHOU Yan-ping and YE Qiao-lin. L1-norm Distance Based Least Squares Twin Support Vector Machine[J]. Computer Science, 2018, 45(4): 100 -105 .
[7] LIU Bo-yi, TANG Xiang-yan and CHENG Jie-ren. Recognition Method for Corn Borer Based on Templates Matching in Muliple Growth Periods[J]. Computer Science, 2018, 45(4): 106 -111 .
[8] GENG Hai-jun, SHI Xin-gang, WANG Zhi-liang, YIN Xia and YIN Shao-ping. Energy-efficient Intra-domain Routing Algorithm Based on Directed Acyclic Graph[J]. Computer Science, 2018, 45(4): 112 -116 .
[9] CUI Qiong, LI Jian-hua, WANG Hong and NAN Ming-li. Resilience Analysis Model of Networked Command Information System Based on Node Repairability[J]. Computer Science, 2018, 45(4): 117 -121 .
[10] WANG Zhen-chao, HOU Huan-huan and LIAN Rui. Path Optimization Scheme for Restraining Degree of Disorder in CMT[J]. Computer Science, 2018, 45(4): 122 -125 .