Computer Science ›› 2017, Vol. 44 ›› Issue (Z11): 166-168.doi: 10.11896/j.issn.1002-137X.2017.11A.034

Previous Articles     Next Articles

3D Point Cloud Segmentation Method Based on Adaptive Angle

LU Yong-huang and HUANG Shan   

  • Online:2018-12-01 Published:2018-12-01

Abstract: Point cloud of 3D segmentation is an important task to extract the point cloud data space based on geometric information.It is the basis of point cloud data feature extraction and analysis.At the same time,the point cloud data are usually discrete and unstructured.The segmentation of point cloud data is not a simple data processing task,and the segmentation efficiency and accuracy determine the data processing results of the work.Therefore,the research of point cloud data segmentation has important significance.This paper presented a cutting algorithm for 3D point cloud based on adaptive angle,in which the PCA algorithm is used to find the optimal dimension projection direction to reduce the dimension of the original point cloud data,and the concept of projection cluster is used to obtain cutting of the original target point cloud.

Key words: Point cloud model,Point cloud segmentation,PCA algorithm,Adaptive angle

[1] 柯映林,单东日.基于边特征的点云数据区域分割[J].浙江大学学报(工学版),2005,39(3):377-380.
[2] 庞成,郭志波,董健.一种基于局部排序PCA的线性鉴别算法[J].计算机科学,2015,42(8):56-59.
[3] 孙金虎.点云模型分割与融合关键技术研究[D].南京:南京航空航天大学,2013.
[4] 王丽辉.三维点云数据处理的技术研究[D].北京:北京交通大学,2011.
[5] 冯少荣,肖文俊.DBSCAN聚类算法的研究与改进[J].中国矿业大学学报,2008,37(1):105-111.
[6] 王庆刚,李见为.具有局部结构保留性质的PCA改进算法[J].模式识别与人工智能,2009,22(3):388-392.
[7] 王松,夏绍玮.一种鲁棒主成分分析(PCA)算法[J].系统工程理论与实践,1998,18(1):9-13.

No related articles found!
Full text



No Suggested Reading articles found!