Computer Science ›› 2017, Vol. 44 ›› Issue (Z6): 212-215.doi: 10.11896/j.issn.1002-137X.2017.6A.048

Previous Articles     Next Articles

Double Threshold Orthogonal Matching Pursuit Algorithm

LIU Xin-yue, ZHAO Zhi-gang, LV Hui-xian, WANG Fu-chi and XIE Hao   

  • Online:2017-12-01 Published:2018-12-01

Abstract: The reconstruction algorithm in theory of compressed sensing (CS) is an important part of compression perception theory.Under the unknown condition of the sparse degree,some reconstruction algorithms perform poorly.To solve this problem,a kind of orthogonal matching pursuit algorithm based on double threshold was put forward.Under the unknown condition of the sparse degree,the twice screening for the selected atoms can have high efficiency and high quality reconstruction image signal.The proposed algorithm can effectively reconstruct signals through experimental comparison with other algorithms.The proposed algorithm in this paper has higher reconstruction precision and has shorter running time.

Key words: Compressed sensing,Reconstruction algorithm,Weak choice,Threshold,Sparse

[1] TSAIG Y,DONOHO D L.Compressed sensing[C]∥IEEETrans.Inform.Theory..2006:1289-1306.
[2] CANDS E,ROMBERG J,TAO T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans.Inform.Theory, 2006,52(2):489-509.
[3] QAISAR S,BILAL R M,IQBAL W,et al.Compressive sensing:From theory to applications,a survey[J].Journal of Communications & Networks,2013,15(5):443-456.
[4] CANDES E J,WAKIN M B.An Introduction To Compressive Sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
[5] 朱明,高文,郭立强.压缩感知理论在图像处理领域的应用[J].中国光学,2011,4(5):441-447.
[6] HERMAN M A,STROHMER T.High-Resolution Radar viaCompressed Sensing[J].IEEE Transactions on Signal Proces-sing,2008,57(6):2275-2284.
[7] ASHIR A M,ELEYAN A.Compressive sensing based facial expression recognition[C]∥Signal Processing and Communication Application Conference.2016.
[8] 李珅,马彩文,李艳,等.压缩感知重构算法综述[J].红外与激光工程,2013,42(S1):225-232.
[9] 杨海蓉,张成,丁大为,等.压缩传感理论与重构算法[J].电子学报,2011,39(1):142-148.
[10] MALLAT S G,ZHANG Z.Matching pursuits with time-fre-quency dictionaries[J].IEEE Transactions on Signal Proces-sing,1993,41(12):3397-3415.
[11] TROPP J A,GILBERT A C.Signal Recovery From RandomMeasurements Via Orthogonal Matching Pursuit[J].IEEE Transactions on Information Theory,2008,53(12):4655-4666.
[12] NDDDELL D,VERSHYNIN R.Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit[J].Foundations of Computational Mathematics,2009,9(3):317-334(18).
[13] DONOHO D L,TSAIG Y,DRORI I,et al.Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit[J].IEEE Transactions on Information Theory,2012,58(2):1094-1121.
[14] NEEDELL D,TROPP J A.CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J].Applied & Computational Harmonic Analysis,2008,26(3):301-321.
[15] BLUMENSATH T,DAVIES,et al.Stagewise Weak Gradient Pursuits[J].IEEE Transactions on Signal Processing,2009,57(11):4333-4346.
[16] DAI W,MILENKOVIC O.Subspace pursuit for compressivesensing signal reconstruction[M]∥Introduction to Occupational Epidemiology.Lewis Publishers,1992:2230-2249.
[17] 刘哲,张鹤妮,张永亮,等.基于弱选择正则化正交匹配追踪的图像重构算法[J].光子学报,2012,41(10):1217-1221.
[18] BARANIUK R G.Compressive Sensing [Lecture Notes][J].IEEE Signal Processing Magazine,2007,24(4):118-121.
[19] CAANDS,EMMANUEL J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9-10):589-592.
[20] ALLENZHU Z,GELASHVILI R,RAZENSHTEYN I.Re-stricted Isometry Property for General p-Norms[J].IEEE Transactions on Information Theory,2015,2(10):5839-5854 .
[21] CHEN S S,DONOHO D L,SAUNDERS M A.Atomic Decomposition by Basis Pursuit[J].Siam Review,2001,43(1):33-61.

No related articles found!
Full text



No Suggested Reading articles found!