Computer Science ›› 2018, Vol. 45 ›› Issue (3): 258-262.doi: 10.11896/j.issn.1002-137X.2018.03.041

Previous Articles     Next Articles

Sparse Representation Classification Model Based on Non-shared Multiple Measurement Vectors

CAI Ti-jian, FAN Xiao-ping, CHEN Zhi-jie and LIAO Zhi-fang   

  • Online:2018-03-15 Published:2018-11-13

Abstract: Simultaneous sparse reconstruction of multiple measurement vectors(MMV) requires that the multiple mea-surement signals share the same sparse structure.However,it is difficult to get the measurement signals exactly sharing same sparse structure in practical applications.In order to reduce the influence of non-shared sparse structure on simultaneous sparse reconstruction of MMV model,this paper proposed a method to improve simultaneous sparse reconstruction algorithms belonging to greedy series.At each iteration,the method does not require that each measurement vector chooses the same representation atoms,but requires selecting representation atoms in the same class.The improved algorithm can be used for sparse representation classification of non-shared multiple measurement vectors.Experiments on simulated data and standard face database show that the improved model can effectively improve the performance of sparse representation classification.

Key words: Compressed sensing,Multiple measurement vector,Shared sparse structure,Sparse representation classification

[1] COTTER S F,RAO B D,ENGAN K,et al.Sparse solutions to linear inverse problems with multiple measurement vectors[J].IEEE Transactions on Signal Processing,2005,53(7):2477-2488.
[2] TANG G,NEHORAI A.Performance analysis for sparse support recovery[J].IEEE Transactions on Information Theory,2009,56(3):1383-1399.
[3] ELDAR Y C,RAUHUT H.Average case analysis of multichan-nel sparse recovery using convex relaxation[J].IEEE Transactions on Information Theory,2010,56(1):505-519.
[4] WANG F S,ZHANG L R,ZHOU Y.Multiple measurementvectors for compressed sensing:model and algorithms analysis[J].Signal Processing,2012,28(6):785-792.(in Chinese) 王法松,张林让,周宇.压缩感知的多重测量向量模型与算法分析[J].信号处理,2012,28(6):785-792.
[5] KANG C,XU W.Color single-pixel imaging based on multiplemeasurement vectors model[J].Optical Engineering,2016,55(3):33103.
[6] SUN Y B,LI H,WU M,et al.Compressed sensing reconstruction of hyperspectral image using the graph sparsity regularized multiple measurement vector model[J].Journal of Electronics & Information Technology,2014,36(12):2942-2948.(in Chinese) 孙玉宝,李欢,吴敏,等.基于图稀疏正则化多测量向量模型的高光谱压缩感知重建[J].电子与信息学报,2014,36(12):2942-2948.
[7] CAO Y Q,HE Y F,HUANG X S.Multi-focus image fusion algorithm based on compressed sensing and regional characteristics[J].Computer Science,2017,44(1):295-299.(in Chinese) 曹义亲,贺亚飞,黄晓生.基于区域特性的压缩感知多聚焦融合算法[J].计算机科学,2017,44(1):295-299.
[8] WANG Y J,LIN Y G.Adaptive acoustic source localizationbased on compressed sensing[J].Computer Engineering and Applications,2016,52(14):62-66.(in Chinese) 王耀军,林勇刚.压缩感知下的自适应声源定位估计[J].计算机工程与应用,2016,52(14):62-66.
[9] CHEN Y C,ZHANG Q,YANG T,et al.A novel SAR imaging algorithm based on modified multiple measurement vectors mo-del[J].Journal of Electronics & Information Technology,2016,38(10):2423-2429.(in Chinese) 陈一畅,张群,杨婷,等.基于改进多重测量向量模型的SAR成像算法[J].电子与信息学报,2016,38(10):2423-2429.
[10] JIAO L C,ZHAO J,YANG S Y,et al.Research advances on sparse cognitive learning,computingand recognition[J].Chinese Journal of Computers,2016,39(4):835-852.(in Chinese) 焦李成,赵进,杨淑媛,等.稀疏认知学习、计算与识别的研究进展[J].计算机学报,2016,39(4):835-852.
[11] TROPP J A,GILBERT A C,STRAUSS M J.Algorithms for simultaneous sparse approximation.Part I:Greedy pursuit[J].Signal Processing,2006,86(3):572-588.
[12] WRIGHT J,YANG A Y,GANESH A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2009,31(2):210-227.
[13] HUANG J,ZHANG T,METAXAS D.Learning with structuredsparsity[J].Journal of Machine Learning Research,2009,12(7):3371-3412.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!