Computer Science ›› 2018, Vol. 45 ›› Issue (5): 64-68.doi: 10.11896/j.issn.1002-137X.2018.05.011

Previous Articles     Next Articles

Digital Modulation Signal Recognition Method Based on ST-RFT Algorithm

LIU Dan, MA Xiu-rong and SHAN Yun-long   

  • Online:2018-05-15 Published:2018-07-25

Abstract: In this paper,the short-time Ramanujan Fourier transform(ST-RFT) algorithm was applied in the research of modulation signal recognition to obtain a new method which can improve the correct recognition rate in low signal-to-noise ratio(SNR) environment.The modulation signals recognition was achieved by normalized ST-RFT spectrogram calculation,characteristic parameters extraction and threshold decision.The simulation results show that when SNR is 0 dB,the average correct recognition rate of the method based on ST-RFT algorithm can reach 90%,which is increased by 10.4% compared with that based on spectrogram time-frequency analysis algorithm.Especially,the correct recognition rate of the proposed method for 4FSK signal can increased by 9% compared with that of the method based on instantaneous amplitude and instantaneous frequency features.The effectiveness and reliability of the proposed method in low SNR are proved by simulation results.

Key words: Digital modulation signal recognition,Short-time Ramanujan Fourier transform,Characteristic parameters,Recognition rate

[1] LIU M S,LI B B,ZHAO L.Feature Optimization for Digital Modulation Signals Recognition[J].Computer Science,2011,38(11):79-82.(in Chinese) 刘明骞,李兵兵,赵雷.数字调制信号识别的特征参数优化方法[J].计算机科学,2011,8(11):79-82.
[2] GRIMALDI D,RAPUANO S,VITO L D.An Automatic Digital Modulation Classifier for Measurement on Telecommunication Networks[J].IEEE Transactions on Instrumentation and Mea-surement,2007,6(5):1711-1720.
[3] LIU X W,JIANG L,XU H,et al.Ultra-wideband Signal Detection Method Based on Hilbert-Huang and Wavelet Packet[J].Computer Science,2016,3(6):102-105.(in Chinese) 刘潇文,蒋磊,许华,等.基于希尔伯特-黄和小波包的UWB信号检测方法[J].计算机科学,2016,3(6):102-105.
[4] ZHANG Y S,LI S X.Natural Sciences[J].Natural ScienceJournal of Harbin Normal University,2011,7(6):50-52.(in Chinese) 张玉山,李双喜.数字通信信号的调制与识别[J].哈尔滨师范大学(自然科学学报),2011,7(6):50-52.
[5] LI N,GAO X J,TIAN R L.Research on Improving the Identification Algorithm of Digital Communication Signals[J].Journal of Jilin University(Information Science Edition),2010,8(3):250-255.(in Chinese) 李娜,高宪军,田润澜.数字通信信号调制方式识别算法的改进研究[J].吉林大学学报(信息科学版),2010,8(3):250-255.
[6] DOBRE O A,ABDI A,BAR-NESS Y,et al.Survey of automatic modulation classification techniques:classical approaches and new trends[J].Communications Let,2007,1(2):137-156.
[7] XU Z,HU S A,WU Q,et al.A modulation Classification Algorithm Based on Differential Constellation Shape[J].Computer Simulation,2009,6(11):182-185.(in Chinese) 徐哲,胡世安,吴钦,等.一种基于差分星座图的调制体制识别算法[J].计算机仿真,2009,6(11):182-185.
[8] HSUE S Z,SOLIMAN S S.Automatic modulation classification using zero crossing[J].Radar & Signal Processing IEEE Proceedings F,1990,7(6):459-464.
[9] LIANG W X,FENG Y X,QIAN B.An Optimization Recognition Algorithm of Amplitude-Frequency Modulation Signals[J].Computer Simulation,2016,3(8):415-420.(in Chinese) 梁伟鑫,冯永新,钱博.幅频调制信号优化识别算法研究[J].计算机仿真,2016,3(8):415-420.
[10] SCHREYOGG C,KITTEL K,KRESSEL U,et al.Robust classification of modulation types using spectral features applied to HMM[C]∥MILCOM 97 Proceedings.1997:1377-1381.
[11] HO K C,PROKOPIW W,CHAN Y T.Modulation identification by the wavelet transform[C]∥MILCOM 95 Proceedings.1995:886-890.
[12] LYNN T J,SHA’AMERR A Z.Automatic analysis and classification of digital modulation signals using spectrogram time frequency analysis[C]∥Proceedings of International Symposium on Communications & Information Technologies.2007:916-920.
[13] SUGAVANESWARAN L,XIE S,UMAPATHY K,et al.Time-Frequency Analysis via Ramanujan Sums[J].IEEE Signal Processing Letters,2012,9(6):352-355.
[14] MAINARDI L T,PATTINI L,CERUTTI S.Application of the Ramanujan Fourier transform for the analysis of secondary structure content in amino acid sequences[J].Methods of Information in Medicine,2007,6(2):126-129.
[15] CHEN G,KRISHNAN S,BUI T D.Ramanujan sums for image pattern analysis[J].International Journal of Wavelets,Multire-solution and Information Processing,2014,2(1):109-112.
[16] SAMADI S,AHMAD M O,SWAMY M N S.Ramanujan sums and discrete Fourier transforms[J].IEEE Signal Processing Letters,2005,2(4):293-296.
[17] RAMANUJAN S.On certain trigonometrical sums and their applications in the theory of numbers [J].Transactions of the Cambridge Philosophical Society,1918,22(13):259-276.
[18] CARMICHAEL R D.Expansions of arthmetical functions in infinite series[J].Proceedings of the London Mathematical Society,1930,34(13):1-26.

No related articles found!
Full text



No Suggested Reading articles found!