Computer Science ›› 2019, Vol. 46 ›› Issue (9): 195-200.doi: 10.11896/j.issn.1002-137X.2019.09.028
• Artificial Intelligence • Previous Articles Next Articles
WU Zhen-yu, LI Yun-lei, WU Fan
CLC Number:
[1]GUO X,HUANG X,ZHANG L,et al.Support Tensor Machines for Classification of Hyperspectral Remote Sensing Imagery[J].IEEE Transactions on Geoscience & Remote Sen-sing,2016,54(6):3248-3264. [2]ZHANG J,HAN Y,JIANG J.Tucker decomposition-based ten-sor learning for human action recognition[J].Multimedia Systems,2016,22(3):343-353. [3]RAJWADE A,RANGARAJAN A,BANERJEE A.Image De-noising Using the Higher Order Singular Value Decomposition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2013,35(4):849-862. [4]BISWAS S K,MILANFAR P.Linear Support Tensor Machine with LSK Channels: Pedestrian Detection in Thermal Infrared Images[J].IEEE Transactions on Image Processing,2017,26(9):4229-4242. [5]CAI D,HE X F,WEN J R,et al.Support Tensor Machines for Text Categorization[J].International Journal of Academic Research in Business & Social Sciences,2006,2(12):2222-6990. [6]LUO L,XIE Y,ZHANG Z,et al.Support matrix machines[C]//International Conference on International Conference on Machine Learning.JMLR.org,2015:938-947. [7]TAO D,LI X,HU W,et al.Supervised Tensor Learning[C]//IEEE International Conference on Data Mining.IEEE,2005. [8]KOTSIA I,PATRAS I.Support tucker machines[C]//The24th IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2011).Colorado Springs,CO,USA,IEEE,2011. [9]HAO Z,HE L,CHEN B,et al.A Linear Support Higher-Order Tensor Machine for Classification[J].IEEE Transactions on Image Processing,2013,22(7):2911-2920. [10]CHEN Y,LU L,ZHONG P.One-class support higher ordertensor machine classifier[J].Applied Intelligence,2017,47(7):1-9. [11]CHEN Z,BATSELIER K,SUYKENS J A K,et al.Parallelized Tensor Train Learning of Polynomial Classifiers[J].IEEE Transactions on Neural Networks & Learning Systems,2016,PP(99):1-12. [12]SHU T.Research on Regression Problem and ClassificationProblem Algorithm with Input Tensor Data[D].Urumqi :Xinjiang University,2017.(in Chinese)舒托.输入为张量的回归问题和分类问题算法研究[D].乌鲁木齐:新疆大学,2017. [13]YU J,LIU G S.Text Classification Research Based on Support Tensor[J].Information Technology,2016(9):10-13.(in Chinese)俞炯,刘功申.基于支持张量机的文本分类研究[J].信息技术,2016(9):10-13. [14]LIU J W,LIU Y,LUO X L.Semi-supervised learning algorithm[J].Chinese Journal of Computers,2015,38(8):1592-1617.(in Chinese)刘建伟,刘媛,罗雄麟.半监督学习方法[J].计算机学报,2015,38(8):1592-1617. [15]CHEN Y H.Research on Semi-supervised learning classification algorithm[D].Zhenjiang:Jiangsu University,2017.(in Chinese)陈英豪.半监督学习分类算法的研究[D].镇江:江苏大学,2017. [16]WIDMANN N,VERBERNE S.Graph-based Semi-supervisedLearning for Text Classification[C]//Acm Sigir International Conference on Theory of Information Retrieval.ACM,2017. [17]HADY M F A,SCHWENKER F.Semi-supervised Learning[J].Intelligent Systems Reference Library,2013,49(2):215-239. [18]XU C,TAO W.Combining Active Learning and Semi-Super-vised Learning by Using Selective Label Spreading [C]//IEEE International Conference on Data Mining Workshops.IEEE,2017. [19]TUCKER L R.Extension of factor analysis to three-dimensional matrices[M]// Contributions to Mathematical Psychology.New York:Helt Rinehart & Winston,1964. [20]TUCKER L R.Some mathematical notes on three-mode factor analysis[J].Psychometrika,1966,31(3):279-311. [21]YANG B.Research and Application of Machine Learning Method Based on Tensor Data[D].Beijing:China Agricultural University,2014.(in Chinese)杨兵.基于张量数据的机器学习方法研究与应用[D].北京: 中国农业大学,2014. [22]ERFANI S M,BAKTASHMOTLAGH M,RAJASEGARAR S,et al.R1STM:One-class Support Tensor Machine with Randomised Kernel[C]//SIAM International Conference on Data Mining.Philadelphia:Society for Industrial and Applied Mathematics Conference,2016. |
[1] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[2] | HOU Xia-ye, CHEN Hai-yan, ZHANG Bing, YUAN Li-gang, JIA Yi-zhen. Active Metric Learning Based on Support Vector Machines [J]. Computer Science, 2022, 49(6A): 113-118. |
[3] | WANG Yu-fei, CHEN Wen. Tri-training Algorithm Based on DECORATE Ensemble Learning and Credibility Assessment [J]. Computer Science, 2022, 49(6): 127-133. |
[4] | XU Hua-jie, CHEN Yu, YANG Yang, QIN Yuan-zhuo. Semi-supervised Learning Method Based on Automated Mixed Sample Data Augmentation Techniques [J]. Computer Science, 2022, 49(3): 288-293. |
[5] | YANG Yang, DI Yi-de, LIU Jun-hui, YI Chao, ZHOU Wei. Study on Learning to Rank Based on Tensor Decomposition in Personalized Tag Recommendation [J]. Computer Science, 2020, 47(11A): 515-519. |
[6] | QIN Yue, DING Shi-fei. Survey of Semi-supervised Clustering [J]. Computer Science, 2019, 46(9): 15-21. |
[7] | SHEN Hong, LIU Jun-fa, CHEN Yi-qiang, JIANG Xin-long, HUANG Zheng-yu. Semi-supervised Scene Recognition Method Based on Multi-mode Fusion [J]. Computer Science, 2019, 46(12): 306-312. |
[8] | YU Ying, CHEN Ke, SHOU Li-dan, CHEN Gang, WU Xiao-fan. Sentiment Analysis of User Comments Based on Extraction of Key Words and Key Sentences [J]. Computer Science, 2019, 46(10): 19-26. |
[9] | LIU Xiao, WANG Xiao-guo. Probabilistic Graphical Model Based Approach for Bank Telecommunication Fraud Detection [J]. Computer Science, 2018, 45(7): 122-128. |
[10] | CAI Yi, ZHU Xiu-fang, SUN Zhang-li and CHEN A-jiao. Semi-supervised and Ensemble Learning:A Review [J]. Computer Science, 2017, 44(Z6): 7-13. |
[11] | CHENG Ying-chao, WANG Rui-hu and HU Zhang-ping. Novel Approach on Collaborative Filtering Based on Gaussian Mixture Model [J]. Computer Science, 2017, 44(Z6): 451-454. |
[12] | LI Feng and WAN Xiao-qiang. SMS Automatic Classification Based on Relational Matrix [J]. Computer Science, 2017, 44(Z6): 428-432. |
[13] | ZHANG Wei, MIAO Duo-qian, GAO Can and LI Feng. Rough Set Attribute Reduction Algorithm for Partially Labeled Data [J]. Computer Science, 2017, 44(1): 25-31. |
[14] | YANG Bei, ZHOU Lan-jiang, YU Zheng-tao and LIU Li-jia. Research on Semi-supervised Learning Based Approach for Lao Part of Speech Tagging [J]. Computer Science, 2016, 43(9): 103-106. |
[15] | LI Jun-li and LI Wei-hua. Semi-supervised SVDD-KFCM Algorithm and its Application in Bearing Fault Detection [J]. Computer Science, 2015, 42(Z6): 134-137. |
|