Computer Science ›› 2020, Vol. 47 ›› Issue (2): 186-194.doi: 10.11896/jsjkx.181202338
• Artificial Intelligence • Previous Articles Next Articles
HUANG Guang-qiu,LU Qiu-qin
CLC Number:
[1]IZTOK F,ANDRES I,AKEMI G.Novelty search for global optimization [J].Applied Mathematics and Computation,2019,347(4):865-881. [2]WOLPERT D H,MACREADY W G.No Free Lunch Theorems for Optimization[J].IEEE Transactions on Evolutionary Computation,1997,1(1):67-82. [3]LUAN J,YAO Z,ZHAO F T.novel method to solve supplier selection problem:Hybrid algorithm of genetic algorithm and ant colony optimization[J].Mathematics and Computers in Si-mulation,2019,156:294-309. [4]ZHANG Q,XIONG S W.Routing optimization of emergency grain distribution vehicles using the immune ant colony optimization algorithm[J].Applied Soft Computing,2018,71(6):917-925. [5]BISWAJIT J,SUMAN M,SRIYANKAR A.Repository and Mutation based Particle Swarm Optimization (RMPSO):A new PSO variant applied to reconstruction of Gene Regulatory Network [J].Applied Soft Computing,2019,74:330-355. [6]ZHU X H,NI Z W,CHENG M Y.Selective ensemble based on extreme learning machine and improved discrete artificial fish swarm algorithm for haze forecast [J].Applied Intelligence,2018,48(7): 1757-1775. [7]GUO J H,LI H C,YANG H D.A collaborative detection approach for internal steam leakage of tyre vulcanization workshop with artificial immune algorithm[J].Computational & Applied Mathematics,2018,37(4):4219-4236. [8]HUANG Q J,ZHANG K,SONG J C.Adaptive differential evolution with a Lagrange interpolation argument algorithm[J].Information Sciences,2019,472:180-202. [9]HUANG G Q,LIU Q C,LU Q Q.Metapopulation Biogeography-Inspired Optimization[J].Journal of System Simulation,2014,26(6):1217-1224. [10]MERNIK M,LIU S H,KARABOGA D,et al.On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation[J].Information Sciences,2015,291:115-127. [11]HUANG G Q.SIS epidemic model-based optimization[J].Journal of Computational Science,2014,5:32-50. [12]HUANG G Q.Function optimization algorithm based on SIRQV epidemic dynamic model[J].Journal of Computation Science,2015,8:62-92. [13]HUANG G.Artificial memory optimization[J].Applied Soft Computing,2017,61:497-526. [14]陈兰荪,孟新柱,焦建军.生物动力学[M].北京:科学出版社,2009:77-155. [15]IISUFESCU M.Finite Markov Processes and Their Applications[M].Wiley:Chichester,1980. [16]LIANG J J,QU B Y,SUGANTHAN P N,et al.Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization[R/OL].Nanyang Technological University,Tech.Rep.,2013.http://www.ntu.edu.sg/home/epnsugan/ index_files/ cec-2013/ Definitions of CEC 13 benchmark suite 0117.pdf. [17] CHUANG Y C,CHEN C T,HWANG C.A simple and efficient real-coded genetic algorithm for constrained optimization[J].Applied Soft Computing,2016,38:87-105. [18]KOROEC P,ILC J, FILIPIC B.The differential ant-stigmergy algorithm[J].Information Sciences,2012,192:82-97. [19]BEHESHTI Z,SHAMSUDDIN S M.Non-parametric particle swarm optimization for global optimization[J].Applied Soft Computing,2015,28:345-359. [20]AL-ROOMI A R,EL-HAWARY M E.Metropolis biogeography-based optimization[J].Information Sciences,2016,360:73-95. [21]MUKHERJEE R,DEBCHOUDHURY S,DAS S.Modified differential evolution with locality induced genetic operators for dynamic optimization[J].European Journal of Operational Research,2016,253:337-355. [22]ZHAO Z W,YANG J M,HU Z Y,et al.A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems[J].European Journal of Operational Research,2016,250(1):30-45. [23] CREPINEK M,LIU S H,MERNIK M.Replication and comparison of computational experiments in applied evolutionary computing:Common pitfalls and guidelines to avoid them[J].Applied Soft Computing,2014,19:161-170. [24]DERRAC J,GARCÍA S,MOLINA D,et al.A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J].Swarm and Evolutionary Computation,2011,1:3-18. |
[1] | ZHANG Xin-ming, LI Shuang-qian, LIU Yan, MAO Wen-tao, LIU Shang-wang, LIU Guo-qi. Coyote Optimization Algorithm Based on Information Sharing and Static Greed Selection [J]. Computer Science, 2020, 47(5): 217-224. |
[2] | HUANG Guang-qiu, LU Qiu-qin. Vertical Structure Community System Optimization Algorithm [J]. Computer Science, 2020, 47(4): 194-203. |
[3] | HUO Jiu-yuan, WANG Ye, HU Zhuo-ya. Convergence Analysis of Artificial Bee Colony Algorithm:Combination of Number and Shape [J]. Computer Science, 2018, 45(10): 212-216. |
[4] | KONG Xiang-yu, LIU San-yang and WANG Zhen. Almost Sure Convergence of Artificial Bee Colony Algorithm:A Martingale Method [J]. Computer Science, 2015, 42(9): 246-248. |
[5] | ZHU Xu-hui, NI Zhi-wei and CHENG Mei-ying. Self-adaptive Improved Artificial Fish Swarm Algorithm with Changing Step [J]. Computer Science, 2015, 42(2): 210-216. |
[6] | HAN Li-xia. Novel Genetic Algorithm for Multi-objective Optimization Problem [J]. Computer Science, 2013, 40(Z6): 64-66. |
[7] | LU Qiu-qin,NIU Qian-qian and HUANG Guang-qiu. Cellular Automata Algorithm for Solving Optimization Problems Based on Memory Principles and its Global Convergence Proof [J]. Computer Science, 2013, 40(4): 249-255. |
[8] | ZHANG Xiang-song,LIU San-yang. Complementarity Support Vector Machines [J]. Computer Science, 2010, 37(2): 165-166. |
|