Computer Science ›› 2020, Vol. 47 ›› Issue (8): 178-184.doi: 10.11896/jsjkx.190700089
Previous Articles Next Articles
DONG Ming-gang1, 2, HUANG Yu-yang1, JING Chao1, 2,
CLC Number:
[1]COVER T, HART P.Nearest neighbor pattern classification[J].IEEE Transactions on Information Theory, 1967, 13(1):21-27. [2]ZHAN Y, DAI S, MAO Q, et al.A Video Semantic Analysis Method Based on Kernel Discriminative Sparse Representation and Weighted KNN[J].Computer Journal, 2018, 58(6):1360-1372. [3]WANG Y, YANG Y W.KNN Similarity Graph AlgorithmBased on Heap and Neighborhood Coexistence[J].Computer Science, 2018, 45(5):196-200, 227. [4]FENG G L, ZHOU W G.Spark-based Parallel Outlier Detection Algorithm of K-nearest Neighbor[J].Computer Science, 2018, 45(S2):349-352, 366. [5]DENG Z, ZHU X, CHENG D, et al.Efficient kNN classification algorithm for big data[J].Neurocomputing, 2016, 195(C):143-148. [6]ZHANG S, LI X, MING Z, et al.Efficient kNN Classification With Different Numbers of Nearest Neighbors[J].IEEE Tran-sactions on Neural Networks & Learning Systems, 2017, PP(99):1-12. [7]ZHANG S, LI X, ZONG M, et al.Learning k, for kNN Classification[J].Acm Transactions on Intelligent Systems & Techno-logy, 2017, 8(3):43. [8]GILPITA R, YAO X.Evolving edited k-nearest neighbor classifiers[J].International Journal of Neural Systems, 2009, 18(6):459-467. [9]XIE H, LIANG D, ZHANG Z, et al.A Novel Pre-Classification Based kNN Algorithm[C]∥IEEE International Conference on Data Mining Workshops.New Orleans, America, 2017:1269-1275. [10]LIU H, MOTODA H.Instance Selection and Construction forData Mining[M].Springer International, 2001:448-454. [11]WETTSCHERECK D, AHA D W, MOHRI T.A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms[J].Artificial Intelligence Review, 1997, 11(1/2/3/4/5):273-314. [12]EIBEN A E, SCHOENAUER M.Evolutionary Computing[J].Soft Computing, 1998, 82(1):1-6. [13]ACAMPORA G, TORTORA G, VITIELLO A.Applying SPEA2to prototype selection for nearest neighbor classification[C]∥IEEE International Conference on Systems, Man, andCyberne-tics.Montreal, Canada, 2017:003924-003929. [14]SASIKALA S, APPAVU A B S, GEETHA S.A novel adaptive feature selector for supervised classification[J].Information Processing Letters, 2017, 117:25-34. [15]KHIABANI A, SABBAGHI A.PHGA:Proposed hybrid genetic algorithm for feature selection in binary classification[C]∥International Conference on Information and Knowledge Technology.Tehran, Iran, 2017:147-154. [16]DERRAC J, GARCA S, HERRERA F.Ifs-CoCo:Instance and Feature Selection Based on Cooperative Coevolution With Nearest Neighbor Rule[J].Pattern Recognition, 2010, 43(6):2082-2105. [17]DERRAC J, TRIGUERO I, GARCIA S, et al.Integrating in-stance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms[J].IEEE Transactions on Systems Man & Cybernetics Part B, 2012, 42(5):1383-1397. [18]DERRAC J, CORNELIS C, GARCA S, et al.Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection[J].Information Sciences, 2012, 186(1):73-92. [19]DERRAC J, VERBIEST N, GARCA S, et al.On the use of evolutionary feature selection for improving fuzzy rough set based prototype selection[J].Soft Computing, 2013, 17(2):223-238. [20]BRAHIM A B, LIMAM M.A hybrid feature selection method based on instance learning and cooperative subset search ☆[J].Pattern Recognition Letters, 2016, 69:28-34. [21]ESHELMAN L J.The CHC Adaptive Search Algorithm:How to Have Safe Search When Engaging in Nontraditional Genetic Recombination[J].Foundations of Genetic Algorithms, 1991, 1:265-283. [22] GOLDBERG D E, SASTRY K.A Practical Schema Theorem for Genetic Algorithm Design and Tuning[C]∥Genetic and Evolutionary Computation Conference.San Francisco, America, 2001:328-335. [23]HUANG Y Y, DONG M G, JING C.Genetic instance selection algorithm for k-nearest neighbor classifier[J].Journal of Computer Applications, 2018, 38(11):3112-3118. |
[1] | LI Bin, WAN Yuan. Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment [J]. Computer Science, 2022, 49(8): 86-96. |
[2] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[3] | KANG Yan, WANG Hai-ning, TAO Liu, YANG Hai-xiao, YANG Xue-kun, WANG Fei, LI Hao. Hybrid Improved Flower Pollination Algorithm and Gray Wolf Algorithm for Feature Selection [J]. Computer Science, 2022, 49(6A): 125-132. |
[4] | YANG Hao-xiong, GAO Jing, SHAO En-lu. Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery [J]. Computer Science, 2022, 49(6A): 191-198. |
[5] | CHU An-qi, DING Zhi-jun. Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation [J]. Computer Science, 2022, 49(4): 134-139. |
[6] | SUN Lin, HUANG Miao-miao, XU Jiu-cheng. Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief [J]. Computer Science, 2022, 49(4): 152-160. |
[7] | LI Zong-ran, CHEN XIU-Hong, LU Yun, SHAO Zheng-yi. Robust Joint Sparse Uncorrelated Regression [J]. Computer Science, 2022, 49(2): 191-197. |
[8] | SHEN Biao, SHEN Li-wei, LI Yi. Dynamic Task Scheduling Method for Space Crowdsourcing [J]. Computer Science, 2022, 49(2): 231-240. |
[9] | REN Shou-peng, LI Jin, WANG Jing-ru, YUE Kun. Ensemble Regression Decision Trees-based lncRNA-disease Association Prediction [J]. Computer Science, 2022, 49(2): 265-271. |
[10] | LIU Zhen-yu, SONG Xiao-ying. Multivariate Regression Forest for Categorical Attribute Data [J]. Computer Science, 2022, 49(1): 108-114. |
[11] | ZHANG Ye, LI Zhi-hua, WANG Chang-jie. Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method [J]. Computer Science, 2021, 48(9): 337-344. |
[12] | YANG Lei, JIANG Ai-lian, QIANG Yan. Structure Preserving Unsupervised Feature Selection Based on Autoencoder and Manifold Regularization [J]. Computer Science, 2021, 48(8): 53-59. |
[13] | HOU Chun-ping, ZHAO Chun-yue, WANG Zhi-peng. Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining [J]. Computer Science, 2021, 48(7): 199-205. |
[14] | HU Yan-mei, YANG Bo, DUO Bin. Logistic Regression with Regularization Based on Network Structure [J]. Computer Science, 2021, 48(7): 281-291. |
[15] | WU Shan-jie, WANG Xin. Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks [J]. Computer Science, 2021, 48(7): 308-315. |
|