Computer Science ›› 2020, Vol. 47 ›› Issue (6): 144-150.doi: 10.11896/jsjkx.190700121
• Computer Graphics & Multimedia • Previous Articles Next Articles
ZHU Wei1,2, WANG Tu-qiang1, CHEN Yue-feng1, HE De-feng1,2
CLC Number:
[1]CANNY J F.A Computation Approach to Edge Detection [M].A Computational Approach to Edge Detection,1986. [2]KONISHI S,YUILLE A L,COUGHLAN J M,et al.Statistical Edge Detection:Learning and Evaluating Edge Cues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(1):57-74. [3]ARBELÁEZ P,MAIRE M,FOWLKES C,et al.Contour Detection and Hierarchical Image Segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,33(5):898-916. [4]DOLLÁR,PIOTR,ZITNICK C L.Fast Edge Detection Using Structured Forests[J].IEEE Transactions on Pattern Analysis &Machine Intelligence,2014,37(8):1558-1570. [5]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet Classification with Deep Convolutional Neural Networks[C]//Advances in Neural Information Processing Systems.2012:1097-1105. [6]GANIN Y,LEMPITSKY V.N4-Fields:Neural Network Nearest Neighbor Fields for Image Transforms[C]//Asian Confe-rence on Computer Vision.Springer,Cham,2014:536-551. [7]BERTASIUS G,SHI J,TORRESANI L.DeepEdge:A Multi-scale Bifurcated Deep Network for Top-down Contour Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:4380-4389. [8]XIE S,TU Z.Holistically-Nested Edge Detection[C]//Procee-dings of the IEEE International Conference on Computer Vision.2015:1395-1403. [9]LIU Y,CHENG M M,HU X,et al.Richer Convolutional Features for Edge Detection[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2017:3000-3009. [10]YU F,KOLTUN V.Multi-scale Context Aggregation by Dilated Convolutions[J].arXiv:1511.07122. [11]HE K,ZHANG X,REN S,et al.Deep Residual Learning for Ima-ge Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [12]WANG P,CHEN P,YUAN Y,et al.Understanding Convolution for Semantic Segmentation[C]//IEEE Winter Conference on Applications of Computer Vision.2018:1451-1460. [13]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125. [14]MOTTAGHI R,CHEN X,LIU X,et al.The Role of Context for Object Detection and Semantic Segmentation in the Wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:891-898. [15]KOKKINOS I.Pushing the Boundaries of Boundary Detection using Deep Learning[J].arXiv:1511.07386. [16]YANG J,PRICE B,COHEN S,et al.Object Contour Detection with a Fully Convolutional Encoder-Decoder Network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:193-202. [17]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,42(2):318-327. [18]ZITNICK C L,DOLLÁR P.Edge Boxes:Locating Object Proposals from Edges[C]//European Conference on Computer Vision.Springer,Cham,2014:391-405. [19]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J].arXiv:1409.1556. [20]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2015:1-9. [21]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE 2017:4700-4708. [22]KIVINEN J,WILLIAMS C,HEESS N.Visual Boundary Prediction:A Deep Neural Prediction Network and Quality Dissection[C]//International Conference on Artificial Intelligence and Statistics.PMLR,2014:512-521. |
[1] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[2] | GAO Rong-hua, BAI Qiang, WANG Rong, WU Hua-rui, SUN Xiang. Multi-tree Network Multi-crop Early Disease Recognition Method Based on Improved Attention Mechanism [J]. Computer Science, 2022, 49(6A): 363-369. |
[3] | ZHAO Ren-xing, XU Pin-jie, LIU Yao. ECG-based Atrial Fibrillation Detection Based on Deep Convolutional Residual Neural Network [J]. Computer Science, 2022, 49(5): 186-193. |
[4] | HAN Hong-qi, RAN Ya-xin, ZHANG Yun-liang, GUI Jie, GAO Xiong, YI Meng-lin. Study on Cross-media Information Retrieval Based on Common Subspace Classification Learning [J]. Computer Science, 2022, 49(5): 33-42. |
[5] | QU Zhong, CHEN Wen. Concrete Pavement Crack Detection Based on Dilated Convolution and Multi-features Fusion [J]. Computer Science, 2022, 49(3): 192-196. |
[6] | GUO Lin, LI Chen, CHEN Chen, ZHAO Rui, FAN Shi-lin, XU Xing-yu. Image Super-resolution Reconstruction Using Recursive ResidualNetwork Based on ChannelAttention [J]. Computer Science, 2021, 48(8): 139-144. |
[7] | WANG Shi-yun, YANG Fan. Remote Sensing Image Semantic Segmentation Method Based on U-Net Feature Fusion Optimization Strategy [J]. Computer Science, 2021, 48(8): 162-168. |
[8] | XU Hua-jie, ZHANG Chen-qiang, SU Guo-shao. Accurate Segmentation Method of Aerial Photography Buildings Based on Deep Convolutional Residual Network [J]. Computer Science, 2021, 48(8): 169-174. |
[9] | BAO Yu-xuan, LU Tian-liang, DU Yan-hui, SHI Da. Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation [J]. Computer Science, 2021, 48(7): 77-85. |
[10] | NIU Kang-li, CHEN Yu-zhang, ZHANG Gong-ping, TAN Qian-cheng, WANG Yi-chong, LUO Mei-qi. Vehicle Flow Measuring of UVA Based on Deep Learning [J]. Computer Science, 2021, 48(6A): 275-280. |
[11] | WANG Jian-ming, LI Xiang-feng, YE Lei, ZUO Dun-wen, ZHANG Li-ping. Medical Image Deblur Using Generative Adversarial Networks with Channel Attention [J]. Computer Science, 2021, 48(6A): 101-106. |
[12] | GONG Hang, LIU Pei-shun. Detection Method of High Beam in Night Driving Vehicle [J]. Computer Science, 2021, 48(12): 256-263. |
[13] | CHAI Bing, LI Dong-dong, WANG Zhe, GAO Da-qi. EEG Emotion Recognition Based on Frequency and Channel Convolutional Attention [J]. Computer Science, 2021, 48(12): 312-318. |
[14] | YANG Kun, ZHANG Juan, FANG Zhi-jun. Multi-patch and Multi-scale Hierarchical Aggregation Network for Fast Nonhomogeneous ImageDehazing [J]. Computer Science, 2021, 48(11): 250-257. |
[15] | LIU Zun-xiong, ZHU Cheng-jia, HUANG Ji, CAI Ti-jian. Image Super-resolution by Residual Attention Network with Multi-skip Connection [J]. Computer Science, 2021, 48(11): 258-267. |
|