Computer Science ›› 2021, Vol. 48 ›› Issue (9): 200-207.doi: 10.11896/jsjkx.200600119
• Computer Graphics & Multimedia • Previous Articles Next Articles
LIU Li-bo, GOU Ting-ting
CLC Number:
[1]WAQAS M,TU S,KOUBAA A,et al.Deep Learning Techniques for Future Intelligent Cross-Media Retrieval[J].arXiv:2008.01191,2020. [2]HOTELLING H.Relations between two sets of variates[M]//Breakthroughs in Statistics.New York:Springer,1992:162-190. [3]HARDOON D R,SZEDMAK S,SHAWE-TAYLOR J.Canonical Correlation Analysis:An Overview with Application to Learning Methods[J].Neural Computation,2004,16(12):2639-2664. [4]VERMA Y,JAWAHAR C V.Im2Text and Text2Im:Associating Images and Texts for Cross-Modal Retrieval[C]//BMVC.2014:2. [5]KLEIN B,LEV G,SADEH G,et al.Associating neural wordembeddings with deep image representations using fisher vectors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:4437-4446. [6]RASIWASIA N,PEREIRA J C,COVIELLO E,et al.A new approach to cross-modal multimedia retrieval[C]//Proceedings of the 18th ACM International Conference on Multimedia.2010:251-260. [7]RANJAN V,RASIWASIA N,JAWAHAR C V.Multi-labelcross-modal retrieval[C]//Proceedings of the IEEE InternationalConference on Computer Vision.2015:4094-4102. [8]YAO T,MEI T,NGO C W.Learning query and image similarities with ranking canonical correlation analysis[C]//Procee-dings of the IEEE International Conference on Computer Vision.2015:28-36. [9]ZUO C,FENG S J,ZHANG X Y,et al.The calculated imaging:deep learning situation,challenges and future[J].Journal of Optics,2020,40(1):45-70. [10]WANG F,WANG H,BIAN Y M,et al.Deep learning applications in computational imaging[J].Journal of Optics,2020,40(1):31-44. [11]WANG C,YANG H,MEINEL C.Deep semantic mapping forcross-modal retrieval[C]//2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI).IEEE,2015:234-241. [12]CASTREJON L,AYTAR Y,VONDRICK C,et al.Learningaligned cross-modal representations from weakly aligned data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2940-2949. [13]WEI Y,ZHAO Y,LU C,et al.Cross-Modal Retrieval withCNN Visual Features:A New Baseline[J].IEEE Transactions on Cybernetics,2017,47(2):449-460. [14]HOANG T,DO T T,NGUYEN T V,et al.Unsupervised Deep Cross-modality Spectral Hashing[J].IEEE Transactions on Image Processing,2020,29:8391-8406. [15]GOODFELLOW I J,POUGETABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Neural Information Processing Systems.2014:2672-2680. [16]REED S,AKATA Z,YAN X C,et al.Generative adversarialtext to image synthesis[C]// Proceedings of the 33rd International Conference on Machine Learning.New York,USA:JML,2016:1060-1069. [17]LIANG X D,HU Z T,ZHANG H,et al.Recurrent topic-transition gan for visual paragraph generation[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:3362-3371. [18]WANG B,YANG Y,XU X,et al.Adversarial cross-modal retrieval[C]//Proceedings of the 25th ACM International Confe-rence on Multimedia.2017:154-162. [19]RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015. [20]ANDREW G,ARORA R,BILMES J,et al.Deep canonical correlation analysis[C]//International Conference on Machine Learning.PMLR,2013:1247-1255. [21]GOODFELLOW I,BENGIO Y,COURVILLE A.Deep Leaning[M].Cambridge:The MIT Press,2016:26-29. [22]ABADI M,BARHAM P,CHEN J,et al.Tensorflow:A system for large-scale machine learning[C]//12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).2016:265-283. [23]WEI Y,ZHAO Y,ZHU Z,et al.Modality-dependent cross-media retrieval[J].ACM Transactions on Intelligent Systems and Technology (TIST),2016,7(4):1-13. [24]CHUA T S,TANG J,HONG R,et al.NUS-WIDE:a real-world web image database from National University of Singapore[C]//Proceedings of the ACM International Conference on Image and Video Retrieval.2009:1-9. [25]WANG K,YIN Q,WANG W,et al.A comprehensive survey on cross-modal retrieval[J].arXiv:1607.06215,2016. [26]XUAN R S,OU W H,SONG H Q,et al.Research on the cross-modal retrieval method of semi-supervised confrontation with graph constraint[J].Journal of Guizhou Normal University (Natural Science Edition),2019,37(4):86-94. [27]WANG K,HE R,WANG W,et al.Learning coupled feature spaces for cross-modal matching[C]//Proceedings of the IEEE International Conference on Computer Vision.2013:2088-2095. [28]SRIVASTAVA N,SALAKHUTDINOV R R.Multimodallearning with deep boltzmann machines[C]//Advances in Neural Information Processing Systems.2012:2222-2230. [29]FENG F,WANG X,LI R.Cross-modal retrieval with correspondence autoencoder[C]//Proceedings of the 22nd ACM International Conference on Multimedia.2014:7-16. [30]ZHAI X,PENG Y,XIAO J.Learning Cross-Media Joint Representation with Sparse and Semi supervised Regularization[J].IEEE Transactions on Circuits & Systems for Video Technology,2014,24(6):965-978. [31]NGIAM J,KHOSLA A,KIM M,et al.Multimodal deep learning[C]//ICML.2011. [32]WANG K,HE R,WANG L,et al.Joint feature selection andsubspace learning for cross-modal retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(10):2010-2023. [33]LONG M,CAO Y,WANG J,et al.Composite CorrelationQuantization for Efficient Multimodal Retrieval[C]//Procee-dings of the 39th International ACM SIGIR Conference on Research and Development in Infromation Retrieval.2016:578-588. [34]PENG Y,QI J,HUANG X,et al.CCL:Cross-modal correlationlearning with multi-grained fusion by hierarchical network[J].IEEE Trans.Multimed.,2018,20(2):405-420. [35]SHANG F,ZHANG H,ZHU L,et al.Adversarial cross-modal retrieval based on dictionary learning[J].Neurocomputing,2019,355:93-104. [36]HU P,PENG D,WANG X,et al.Multimodal adversarial net-work for cross-modal retrieval[J].Knowledge-Based Systems,2019,180:38-50. |
[1] | CAO Xiao-wen, LIANG Mei-yu, LU Kang-kang. Fine-grained Semantic Reasoning Based Cross-media Dual-way Adversarial Hashing Learning Model [J]. Computer Science, 2022, 49(9): 123-131. |
[2] | HOU Hong-xu, SUN Shuo, WU Nier. Survey of Mongolian-Chinese Neural Machine Translation [J]. Computer Science, 2022, 49(1): 31-40. |
[3] | FENG Xia, HU Zhi-yi, LIU Cai-hua. Survey of Research Progress on Cross-modal Retrieval [J]. Computer Science, 2021, 48(8): 13-23. |
[4] | WANG Sheng, ZHANG Yang-sen, CHEN Ruo-yu, XIANG Ga. Text Matching Method Based on Fine-grained Difference Features [J]. Computer Science, 2021, 48(8): 60-65. |
[5] | SUN Sheng-zi, GUO Bing-hui , YANG Xiao-bo. Embedding Consensus Autoencoder for Cross-modal Semantic Analysis [J]. Computer Science, 2021, 48(7): 93-98. |
[6] | ZHAN Wan-jiang, HONG Zhi-lin, FANG Lu-ping, WU Zhe-fu, LYU Yue-hua. Collaborative Filtering Recommendation Algorithm Based on Adversarial Learning [J]. Computer Science, 2021, 48(7): 172-177. |
[7] | DENG Yi-jiao, ZHANG Feng-li, CHEN Xue-qin, AI Qing, YU Su-zhe. Collaborative Attention Network Model for Cross-modal Retrieval [J]. Computer Science, 2020, 47(4): 54-59. |
[8] | SHAO Yang-xue, MENG Wei, KONG Deng-zhen, HAN Lin-xuan, LIU Yang. Cross-modal Retrieval Method for Special Vehicles Based on Deep Learning [J]. Computer Science, 2020, 47(12): 205-209. |
[9] | SUN Quan, ZENG Xiao-qin. Image Inpainting Based on Generative Adversarial Networks [J]. Computer Science, 2018, 45(12): 229-234. |
[10] | LIU Xiao-qin, WANG Jie-ting, QIAN Yu-hua and WANG Xiao-yue. Ensemble Method Against Evasion Attack with Different Strength of Attack [J]. Computer Science, 2018, 45(1): 34-38. |
|