Computer Science ›› 2021, Vol. 48 ›› Issue (6): 227-233.doi: 10.11896/jsjkx.200800016
• Artificial Intelligence • Previous Articles Next Articles
LI Shan1,2, XU Xin-zheng1,2,3
CLC Number:
[1]DENTON E,ZAREMBA W,BRUNA J,et al.Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation[C]//Neural Information Processing Systems.MIT Press,2014:1269-1277. [2]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//IEEE Conference on Computer Vision &Pattern Recognition.IEEE Computer Society,2016:770-778. [3]HE Y,KANG G,DONG X,et al.Soft Filter Pruning for Accele-rating Deep Convolutional Neural Networks[C]//International Joint Conference on Artificial Intelligence.AAAI Press,2018:2234-2240. [4]HAN S,POOL J,TRAN J,et al.Learning both weightsand con-nections for efficient neural network[C]//Neural Information Processing Systems Conference.MIT Press:2015,1135-1143. [5]CARREIRA-PERPINAN M A,IDELBAYEV Y.learning-compression algorithms for neural net pruning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2018:8532-8541. [6]LI H,KADAV A,DURDANOVIC I,et al.Pruning filters for efficient ConvNets[J].arXiv:1608.08710,2016. [7]YU R,LI A,DAVIS L S,et al.NISP:Pruning networks using neuron importance score propagation[C]//Computer Vision and Pattern Recognition.IEEE,2018:9194-9203. [8]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Computer Vision and Pattern Recognition.IEEE,2015:1-9. [9]HAN S,MAO H,DALLY W J.Deep Compression:Compres-sing Deep Neural Networks with Pruning,Trained Quantization and Huffman Coding[J].Fiber,2015,56(4):3-7. [10]YE J B,LU X,LIN Z,et al.Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers[J].arXiv:1802.00124,2018. [11]LECUN Y,DENKER J S,SOLLA S A,et al.Optimal BrainDamage[C]//Advances in Neural Information Processing Systems.Massachusetts Institute of Technology Press,1989:598-605. [12]HASSIBI B,STORK D G.Second order derivatives for network pruning:Optimal Brain Surgeon[C]//Neural Information Processing Systems.Massachusetts Institute of Technology Press.1992:164-171. [13]HINTON G,VINYALS O,DEAN J.Distilling the Knowledgein a Neural Network[J].Computer Science,2015,14(7):38-39. [14]YANG T,CHEN Y,SZE V,et al.Designing Energy-EfficientConvolutional Neural Networks Using Energy-Aware Pruning[C]//Computer Vision and Pattern Recognition.IEEE,2017:6071-6079. [15]ZHUO H,QIAN X,FU Y,et al.SCSP:Spectral Clustering Filter Pruning with Soft Self-adaption Manners[J].arXiv:1806.05320,2018. [16]WANG D,ZHOU L,ZHANG X N,et al.Exploring Linear Relationship in Feature Map Subspace for ConvNets Compression[J].arXiv:1803.05729,2018. [17]BYUNGMIN A,KIM T.Deeper Weight Pruning without Accuracy Loss in Deep Neural Networks[C]//2020 Design,Automation & Test in Europe Conference.EDA Consortium,2020:73-78. [18]HANSON S J,PRATT L Y.Comparing biases for minimal network construction with back-propagation[C]//Advances in Neural Information Processing Systems.MIT Press,1989:177-185. [19]TUNG F,MORI G.Deep Neural Network Compression by In-Parallel Pruning-Quantization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence ,2020:42(3):568-579. [20]ZHANG T,YE S,ZHANG K,et al.A systematic dnn weight pruning framework using alternating direction method of multipliers[C]//Computer Vision and Pattern Recognition.Lecture Notes in Computer Science,2018:191-207. [21]GUO Y,YAO A,CHEN Y,et al.Dynamic network surgery for efficient DNNs[C]//Neural Information Processing Systems.Curran Associates,Inc.,2016:1387-1395. [22]DONG X,CHEN S,PAN S.Learning to prune deep neural networks via layer-wise optimal brain surgeon[C]//Advances in Neural Information Processing Systems.Curran Associates Inc.,2017:4857-4867. [23]LIU Z,LI J,SHEN Z,et al.Learning Efficient Convolutional Networks through Network Slimming[C]//International Conference on Computer Vision.IEEE,2017:2755-2763. [24]LIN M B,JI R R,WANG Y,et al.HRank:Filter Pruning using High-Rank Feature Map[J].arXiv:2002.10179. [25]LUO J,WU J,LIN W,et al.ThiNet:A Filter Level Pruning Method for Deep Neural Network Compression[C]//International Conference on Computer Vision.IEEE,2017:5068-5076. [26]HE Y,ZHANG X,SUN J,et al.Channel Pruning for Accelerating Very Deep Neural Networks[C]// International Confe-rence on Computer Vision.IEEE Computer Society,2017:1398-1406. [27]MOLCHANOV P,TYREE S,KARRAS T,et al.Pruning Convo-lutional Neural Networks for Resource Efficient Inference[J].arXiv:1611.06440. [28]DUBEY A,CHATTERJEE M,AHUJA N,et al.Coreset-Based Neural Network Compression[C]//European Conference on Computer Vision.Springer International Publishing,2018:469-486. [29]SUAU X,ZAPPELLA L,PALAKKODE V,et al.Principal filter analysis for guided network compression[J].arXiv:1807.10585,2018. [30]WANG D,ZHOU L,ZHANG X,et al.Exploring linear relationship in feature map subspace for convnets compression[J].ar-Xiv:1803.05729,2018. [31]NG A Y,JORDAN M I,WEISS Y,et al.On Spectral Clustering:Analysis and an algorithm[C]//Neural Information Processing Systems.MIT Press,2001:849-856. [32]KUNCHEVA L I,BEZDEK J C.Nearest prototype classifica-tion:clustering,genetic algorithms,or random search?[J].IEEE Transactions on Systems Man Cybernetics-Systems,1998,28(1):160-164. [33]ZHU Z L,LIU Y J.A Novel Algorithm by Incorporating Chaos Optimization and Improved Fuzzy C-Means for Image Segmentation[J].Acta Electronica Sinica,2020,48(5):975-984. [34]ZHANG C X,PEI L J,CHEN Z,et al.RGBD Scene Flow Estimation Based on FRFCM Clustering and Depth Optimization[J].Acta Electronica Sinica,2020,48(7):1380-1386. [35]ZHANG Z Y,LIN J,MIAO R S.Hesitant fuzzy language agglomerative hierarchical clustering algorithm and its application [J].Statistics and Decision Making,2019,35(21):71-74. [36]LU X K.Research on parallel processing of multi-source information fusion based on clustering algorithm [J].Journal of China Academy of Electronic Sciences,2019,14(3):251-255,264. [37]BANDYOPADHYAY S,COYLE E J.An energy efficient hie-rarchical clustering algorithm for wireless sensor networks[C]//Twenty-Second Annual Joint Conference of the IEEE Computer and Communications(INFOCOM 2003).IEEE,2003:1713-1723. [38]ZHAO Y,KARYPIS G.Evaluation of hierarchical clustering algorithms for document Datasets[C]//Conference on Information and Knowledge Management.Association for Computing Machinery.2002:515-524. [39]LI G,YUAN X K,XU A D,et al.Application of artificial bee colony algorithm in big data based on MapReduce [J].Computer and Digital Engineering,2020,48(1):124-129,146. [40]MURTAGH F,LEGENDRE P.Ward’s Hierarchical Agglome-rative Clustering Method:Which Algorithms Implement Ward’s Criterion?[J].Journal of Classification,2014,31(3):274-295. [41]KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[J].Handbook of Systemic Autoimmune Diseases,2009,1(4):1-60. [42]LECUN Y,BOTTOU L,HAFFNER P.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [43]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large Scale Image Recognition[J].arXiv:1409.1556,2014. |
[1] | CHAI Hui-min, ZHANG Yong, FANG Min. Aerial Target Grouping Method Based on Feature Similarity Clustering [J]. Computer Science, 2022, 49(9): 70-75. |
[2] | ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105. |
[3] | HAO Qiang, LI Jie, ZHANG Man, WANG Lu. Spatial Non-cooperative Target Components Recognition Algorithm Based on Improved YOLOv3 [J]. Computer Science, 2022, 49(6A): 358-362. |
[4] | WANG Shan, XU Chu-yi, SHI Chun-xiang, ZHANG Ying. Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM [J]. Computer Science, 2022, 49(6A): 675-679. |
[5] | LI Si-quan, WAN Yong-jing, JIANG Cui-ling. Multiple Fundamental Frequency Estimation Algorithm Based on Generative Adversarial Networks for Image Removal [J]. Computer Science, 2022, 49(3): 179-184. |
[6] | LIU Yang, LI Fan-zhang. Fiber Bundle Meta-learning Algorithm Based on Variational Bayes [J]. Computer Science, 2022, 49(3): 225-231. |
[7] | ZHANG Ya-di, SUN Yue, LIU Feng, ZHU Er-zhou. Study on Density Parameter and Center-Replacement Combined K-means and New Clustering Validity Index [J]. Computer Science, 2022, 49(1): 121-132. |
[8] | HU Yan-li, TONG Tan-qian, ZHANG Xiao-yu, PENG Juan. Self-attention-based BGRU and CNN for Sentiment Analysis [J]. Computer Science, 2022, 49(1): 252-258. |
[9] | GONG Hao-tian, ZHANG Meng. Lightweight Anchor-free Object Detection Algorithm Based on Keypoint Detection [J]. Computer Science, 2021, 48(8): 106-110. |
[10] | CHEN Zhi-wen, WANG Kun, ZHOU Guang-yun, WANG Xu, ZHANG Xiao-dan, ZHU Hu-ming. SAR Image Change Detection Method Based on Capsule Network with Weight Pruning [J]. Computer Science, 2021, 48(7): 190-198. |
[11] | PAN Ming-yuan, SONG Hui-hui, ZHANG Kai-hua, LIU Qing-shan. Learning Global Guided Progressive Feature Aggregation Lightweight Network for Salient Object Detection [J]. Computer Science, 2021, 48(6): 103-109. |
[12] | TANG Xin-yao, ZHANG Zheng-jun, CHU Jie, YAN Tao. Density Peaks Clustering Algorithm Based on Natural Nearest Neighbor [J]. Computer Science, 2021, 48(3): 151-157. |
[13] | ZHAN Rui, LEI Yin-jie, CHEN Xun-min, YE Shu-han. Street Scene Change Detection Based on Multiple Difference Features Network [J]. Computer Science, 2021, 48(2): 142-147. |
[14] | LIU Yan, QIN Pin-le, ZENG Jian-chao. Multi-object Tracking Algorithm Based on YOLOv3 and Hierarchical Data Association [J]. Computer Science, 2021, 48(11A): 370-375. |
[15] | CHEN Hao-nan, LEI Yin-jie, WANG Hao. Lightweight Lane Detection Model Based on Row-column Decoupled Sampling [J]. Computer Science, 2021, 48(11A): 416-419. |
|