Computer Science ›› 2021, Vol. 48 ›› Issue (11A): 46-51.doi: 10.11896/jsjkx.201200184

• Intelligent Computing • Previous Articles     Next Articles

Traffic Prediction Model Based on Dual Path Information Spatial-Temporal Graph Convolutional Network

KANG Yan, XIE Si-yu, WANG Fei, KOU Yong-qi, XU Yu-long, WU Zhi-wei, LI Hao   

  1. School of Software,Yunnan University,Kunming 650504,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:KANG Yan,born in 1972,Ph.D,associate professor.Her main research interests include transfer learning,deep learning and integrated learning.
    LI Hao,born in 1970,Ph.D,professor.His main research interests include distributed computing,grid and cloud computing.
  • Supported by:
    National Natural Science Foundation of China(61762092),Yunnan Key Laboratory of Software Engineering Open Fund Project(2017SE204),Yunnan Major Science and Technology Project(202002AB080001),Yunnan University Service Yunnan Action Plan “Key Technology Research and Implementation of Airport Smart Management Platform(C176240501005)and Material Genetic Engineering - Metcloud Based Integrated Computing Function Module Computing Software Development (2019CLJY06).

Abstract: With the development of deep learning,neural network has a large number of applications in various fields,and intelligent transportation system is no exception.Traffic flow forecast is the cornerstone of intelligent traffic system and the core of the whole traffic forecast.In recent years,the use of the graph convolutional neural network has effectively improved the performance of traffic prediction.How to further improve the ability to capture the spatial and temporal characteristics of the graph will become a hot topic.In order to improve the accuracy of traffic prediction,this paper proposes a traffic prediction model based on the convolution network of dual path information spatial-temporal map.First of all,the traffic prediction model based on the graph convolution network has some shortcomings in long-distance dependence modeling,and has not fully mined the hidden relationship between the spatial-temporal diagram information and the missing information in the spatial-temporal diagram structure,so we propose a triple pooling attention mechanism to model the global context information.Based on the figure of each increase in parallel convolution layer and the time convolution triple pooling attention path,we construct a dual path information spatial-temporal convolution layer,enhance the generalization ability of convolution layer,improve the model's ability to capture long distance dependence,and spatial-temporal convolution layer can capture figure characteristics of space and time structure of spacetime,effectively improve the traffic prediction performance.Experimental results on two public transport data sets (METR-LA and PEMS-BAY) show that the proposed model has good performance.

Key words: Global context modeling, Graph convolutional neural network, Long distance dependence, Traffic forecast

CLC Number: 

  • TP181
[1]ZHOU J,CUI G,ZHANG Z,et al.Graph neural networks:A review of methods and applications[J].arXiv:1812.08434,2018.
[2]ZHANG J,WANG F Y,WANG K,et al.Data-driven intelligent transportation systems:A survey[J].IEEE Transactions on Intelligent Transportation Systems,2011,12(4):1624-1639.
[3]WU Z,PAN S,LONG G,et al.Connecting the Dots:Multivariate Time Series Forecasting with Graph Neural Networks[J].arXiv:2005.11650,2020.
[4]CAO Y,XU J,LIN S,et al.Gcnet:Non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2019.
[5]YANG B,KANG Y,LI H,et al.Spatio-temporal expand-and-squeeze networks for crowd flow prediction in metropolis[J].IET Intelligent Transport Systems,2020,14(5):313-322.
[6]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014.
[7]WILLIAMS B M,HOEL L A.Modeling and forecasting vehicular traffic flow as a seasonal arima process:Theoretical basis and empirical results.Journal of Transportation Engineering,2003,129(6):664-672.
[8]CHENG S,LU F,PENGP,et al.Short-term traffic forecasting:An adaptive ST-KNN model that considers spatial heterogeneity[J].Computers Environment and Urban Systems,2018,71(SEP.):186-198.
[9]DU L,PEETA S,KIMY H.An adaptive information fusionmodel to predict the short-term link travel time distribution in dynamic traffic networks[J].Transportation Research Part B Methodological,2012,46(1):235-252.
[10]FENG N,GUO S N,SONG C,et al.Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J].Journal of Software,2019(3):759-769.
[11]MA X,YU H,WANG Y,et al.Large-scale transportation network congestion evolution prediction using deep learning theory[J].PloS one,2015,10(3):e0119044.
[12]YU R,LI Y,SHAHABI C,et al.Deep learning:A generic approach for extreme condition traffic forecasting[C]//Procee-dings of the 2017 SIAM international Conference on Data Mi-ning.Society for Industrial and Applied Mathematics,2017:777-785.
[13]SUN S,HUANG R,GAO Y.Network-Scale Traffic Modelingand Forecasting with Graphical Lasso and Neural Networks[J].Journal of Transportation Engineering,2012,138(11):1358-1367.
[14]YU H,WU Z,WANG S,et al.Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J].Sensors,2017,17(7):1501.
[15]LI Y,YU R,SHAHABI C,et al.Diffusion convolutional recurrent neural network:Data-driven traffic forecasting[J].arXiv:1707.01926,2017.
[16]YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks:A deep learning framework for traffic forecasting[J].arXiv:1709.04875,2017.
[17]WANG X,GIRSHICK R,GUPTA A,et al.Non-local neuralnetworks[C]//Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition.2018:7794-7803.
[18]HUANG Z,WANG X,HUANG L,et al.Ccnet:Criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:603-612.
[19]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[20]HU J,SHEN L,ALBANIE S,et al.Gather-excite:Exploitingfeature context in convolutional neural networks[C]//Advances in Neural Information Processing Systems.2018:9401-9411.
[21]ZHAO H,ZHANG Y,LIU S,et al.Psanet:Point-wise spatial attention network for scene parsing[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:267-283.
[22]WU Z,PAN S,LONG G,et al.Graph WaveNet for Deep Spatial-Temporal Graph Modeling[C]//Twenty-Eighth International Joint Conference on Artificial Intelligence IJCAI-19.2019.
[23]MISRA D,NALAMADA T,ARASANIPALAI A U,et al.Rotate to Attend:Convolutional Triplet Attention Module[J].ar-Xiv:2010.03045,2020.
[24]SHEN X J,ZHANG J T,HANG D J.Short-term Traffic Flow Prediction Model Based on Gradient Boosting Regression Tree[J].Computer Science,2018,45(6):222-227,264.
[25]WOOS,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:3-19.
[1] LI Zi-yi, ZHOU Xia-bing, WANG Zhong-qing, ZHANG Min. Stance Detection Based on User Connection [J]. Computer Science, 2022, 49(5): 221-226.
[2] GAO Yue, FU Xiang-ling, OUYANG Tian-xiong, CHEN Song-ling, YAN Chen-wei. EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network [J]. Computer Science, 2022, 49(4): 30-36.
[3] LI Hao, ZHANG Lan, YANG Bing, YANG Hai-xiao, KOU Yong-qi, WANG Fei, KANG Yan. Fine-grained Sentiment Classification of Chinese Microblogs Combining Dual Weight Mechanismand Graph Convolutional Neural Network [J]. Computer Science, 2022, 49(3): 246-254.
[4] MIAO Qi-guang, XIN Wen-tian, LIU Ru-yi, XIE Kun, WANG Quan, YANG Zong-kai. Graph Convolutional Skeleton-based Action Recognition Method for Intelligent Behavior Analysis [J]. Computer Science, 2022, 49(2): 156-161.
[5] ZHANG Hu, BAI Ping. Graph Convolutional Networks with Long-distance Words Dependency in Sentences for Short Text Classification [J]. Computer Science, 2022, 49(2): 279-284.
[6] LIANG Hao-hong, GU Tian-long, BIN Chen-zhong, CHANG Liang. Combining User-end and Item-end Knowledge Graph Learning for Personalized Recommendation [J]. Computer Science, 2021, 48(5): 109-116.
[7] YE Song-tao, ZHOU Yang-zheng, FAN Hong-jie, CHEN Zheng-lei. Joint Learning of Causality and Spatio-Temporal Graph Convolutional Network for Skeleton- based Action Recognition [J]. Computer Science, 2021, 48(11A): 130-135.
[8] GAO Chuang, LI Jian-hua, JI Xiu-yi, ZHU Cheng-long, LI Shi-liang, LI Hong-lin. Drug Target Interaction Prediction Method Based on Graph Convolutional Neural Network [J]. Computer Science, 2021, 48(10): 127-134.
[9] LIU Hai-chao, WANG Li. Graph Classification Model Based on Capsule Deep Graph Convolutional Neural Network [J]. Computer Science, 2020, 47(9): 219-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!