Computer Science ›› 2021, Vol. 48 ›› Issue (11A): 620-624.doi: 10.11896/jsjkx.201200252
• Interdiscipline & Application • Previous Articles Next Articles
SUN Rong-rong1, SHAN Fei2, YE Wen2
CLC Number:
[1]CHENG J Y,CHEN F,ALLEY M T,et al.Highly Scalable Image Reconstruction Using Deep Neural Networks with Bandpass Filtering[J].arXiv:1805.03300,2018. [2]KÜSTNER T,LIEBGOTT A,MAUCH L,et al.AutomatedReference-Free Detection of Motion Artifacts in Magnetic Resonance Images[J].Magnetic Resonance Materials in Physics,Biology and Medicine,2018,31(2):243-256. [3]MARDANI M,GONG E,CHENG J Y,et al.Deep Generative Adversarial Neural Networks for Compressive Sensing MRI[J].IEEE Transactions on Medical Imaging,2019,38(1):167-179. [4]SZEGEDY C,WEI L,YANGQING J,et al.Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2015:1-9. [5]BOSSE S,MANIRY D,MÜLLER K R,et al.Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment[J].IEEE Transactions on Image Processing,2018,27(1):206-219. [6]GAO F,YU J,ZHU S,et al.Blind image quality prediction by exploiting multi-level deep representations[J].Pattern Recognition,2018,81:432-442. [7]FAN C,ZHANG Y,FENG L,et al.No Reference Image Quality Assessment based on Multi-Expert Convolutional Neural Networks[J].IEEE Access,2018,6:8934-8943. [8]GU J,MENG G,REDI J A,et al.Blind Image Quality Assessment via Vector Regression and Object Oriented Pooling[J].IEEE Transactions on Multimedia,2018,20(5):1140-1153. [9]SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception v4,inception resnet and the impact of residual connections on lear-ning[C]//The AAAI Conference on Artificial Intelligence,2017:4278-4284. [10]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016:2818-2826. [11]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA,2016:770-778. [12]WU P,LIN G Q,GUO Y R,et al.Self-learning sparse denseNet image classification method[J].Journal of Signal Processing,2019,35(10):1747-1752. [13]HUANG G,LIU Z,WEINBERGER K Q,et al.Densely connected convolutional networks[C]//CVPR.2017. [14]IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proc of the 32nd International Conference on Machine Learning.2015:448-456. [15]GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifierneural networks[C]//Proc of the 14th International Conference on Artificial Intelligence and Statistics.Piscataway,NJ:IEEE Press,2011:315-323. [16]SHEIKH H R,BOVIK A C.Image information and visual quality [J].IEEE Trans.Image Process.2006,15(2):430-444. |
[1] | DAI Zhao-xia, LI Jin-xin, ZHANG Xiang-dong, XU Xu, MEI Lin, ZHANG Liang. Super-resolution Reconstruction of MRI Based on DNGAN [J]. Computer Science, 2022, 49(7): 113-119. |
[2] | LIU Han-qing, KANG Xiao-dong, GAO Wan-chun, LI Bo, WANG Ya-ge, ZHANG Hua-li, BAI Fang. Research on Propagation of COVID-19 Based on Multiple Models [J]. Computer Science, 2021, 48(6A): 196-202. |
[3] | LI Yi-meng, LI Cheng-hai, SONG Ya-fei, WANG Jian. Method of Malware Family Classification Based on Attention-DenseNet-BC Model Mechanism [J]. Computer Science, 2021, 48(10): 308-314. |
|