Computer Science ›› 2022, Vol. 49 ›› Issue (6): 217-223.doi: 10.11896/jsjkx.210500105
• Computer Graphics & Multimedia • Previous Articles Next Articles
XU Hui1,2, KANG Jin-meng1, ZHANG Jia-wan1
CLC Number:
[1] CHEN Y,AI Y P,GUO H G.Inpainting algorithm for dun-huang mural based on improved curvature-driven diffusion mo-del[J].Journal of Computer-Aided Design & Computer Gra-phics,2020,32(5):787-796. [2] ZHANG Z Y,SHUI W Y,ZHOU M Q,et al.Research on disease extraction and inpainting algorithm of digital grotto murals[J].Application Research of Computers,2021,38(8):1-5. [3] BELHI A,BOURAS A,AL-ALI A K,et al.A machine learning framework for enhancing digital experiences in cultural heritage[J/OL].Journal of Enterprise Mnformation Management.https://doi.org/10.1108/JEIM-02-2020-0059. [4] BERTALMIO M,SAPIRO G,CASELLES V,et a1.Image inpainting[C]//Proceedings of International Conference on Computer Graphics and Interactive Techniques.New Orleans,Louisiana,USA,2000:417-424. [5] BERTALMIO M.Strong-continuation,contrast-invariant inpain-ting with a third order optimal PDE[J].IEEE Transaction on Image Processing,2006,15(7):1934-1938. [6] CHAN T F,SHEN J H.Non-texture inpainting by curvature-driven diffusions(CDD)[J].Journal of Visual Communication and Image Representation,2001,12(4):436-449. [7] CHAN R H,WEN Y W,YIP A M.A fast optimization transfer algorithm for image inpainting in wavelet domains[J].IEEE Transactions onImage Processing,2009,18(7):1467-1476. [8] DRORI I,COHEN-OR D,YESHURUN H.Fragment-basedimage completion[C]//ACM S2GGRAPH.2003:303-312. [9] CRIMINISI A,PEREZ P,TOYAMA K.Region filling and object removal by exemplar-based image inpainting[J].IEEE Transactions On Image Processing.2004,13(9):25-29. [10] XU Z,SUN J.Image inpainting by patch propagation usingpatch sparsity[J].IEEE Transactions onImage Processing,2010,19(5):1153-1165. [11] YANG X P,WANG S W.Dunhuang mural inpainting in intricate disrepaired region based on improvement of priority algorithm[J].Journal of Computer-Aided Design & Computer Graphics,2011,23(2):284-289. [12] JIAO L J,WANG W J,LI B J,et al.Wutai mountain mural inpainting based on improved block matching algorithm[J].Journal of Computer-Aided Design & Computer Graphics,2019,31(1):118-125. [13] ZHAO L L,SHEN L,HONG R C.Survey on image inpainting research progress[J].Computer Science,2021,48(3):14-26. [14] KÖHLER R,SCHULER C,SCHÖLKOPF B,et al.Mask-specific inpainting with deep neural networks[C]//German Confe-rence on Pattern Recognition.Cham:Springer,2014:523-534. [15] XIE J,XU L,CHEN E.Image denoising and inpainting with deep neural networks[C]//Advances in Neural Information Processing Systems.2012:341-349. [16] REN J S J,XU L,YAN Q,et al.Shepard convolutional neural networks[C]//Advances in Neural Information Processing Systems.2015:901-909. [17] PATHAK D,KRAHENBUHL P,DONAHUE J,et al.Context encoders:Feature learning by inpainting[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2536-2544. [18] LI Y,LIU S,YANG J,et al.Generative face completion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:3911-3919. [19] IIZUKA S,SIMO-SERRA E,ISHIKAWA H.Globally and locally consistent image completion[J].ACM Transactions on Graphics,2017,36(4):1-14. [20] YAN Z,LIX,LI M,et al.Shift-net:Image inpainting via deep feature rearrangement[C]//Proceedings of the European Conference on Computer Vision.2018:1-17. [21] RADFORD A,METZ L,CHINTALA S.Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks[EB/OL].http://arxiv.Org/abs/1511.06434. [22] ZOU Z,ZHAO P,ZHAO X F.Automatic segmentation,inpain-ting,and classification of defective patterns on ancient architecture using multiple deep learning algorithms[J/OL].Structural Contural & Health Monitoring.https://doi.org/10.1002/stc.2742. [23] GOODFELLOW I,POUGET-ABADIE J,MIRZA M.Genera-tive Adversarial Networks[DB/OL].http://arxiv.Org/abs/1406.2661. [24] MIRZA M,OSINDERO S.Conditional Generative AdversarialNets[DB/OL].http://arxiv.Org/abs/1411.1784. [25] DENTON E,CHINTALA S,SZLAM A,et a1.Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks[DB/OL].http://arxiv.Org/abs/506.05751. [26] LEI L,GUO D E,JIN F.Image Inpainting Algorithm Based on Conditional Generative Adversarial Network with Spectral Normalization[J].Computer Engineering,2021,47(1):230-238. [27] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein gan[J].arXiv:1701.07875,2017. [28] CHEN Y,GAO Y.Image denoising via iterative diffusion me-thods combining two edge-indicators with adaptive thresholds[J].Multimedia Tools and Applications,2021,80(10):16027-16044. |
[1] | XU Guo-ning, CHEN Yi-peng, CHEN Yi-ming, CHEN Jin-yin, WEN Hao. Data Debiasing Method Based on Constrained Optimized Generative Adversarial Networks [J]. Computer Science, 2022, 49(6A): 184-190. |
[2] | GAO Zhi-yu, WANG Tian-jing, WANG Yue, SHEN Hang, BAI Guang-wei. Traffic Prediction Method for 5G Network Based on Generative Adversarial Network [J]. Computer Science, 2022, 49(4): 321-328. |
[3] | DOU Zhi, WANG Ning, WANG Shi-jie, WANG Zhi-hui, LI Hao-jie. Sketch Colorization Method with Drawing Prior [J]. Computer Science, 2022, 49(4): 195-202. |
[4] | LI Si-quan, WAN Yong-jing, JIANG Cui-ling. Multiple Fundamental Frequency Estimation Algorithm Based on Generative Adversarial Networks for Image Removal [J]. Computer Science, 2022, 49(3): 179-184. |
[5] | TAN Xin-yue, HE Xiao-hai, WANG Zheng-yong, LUO Xiao-dong, QING Lin-bo. Text-to-Image Generation Technology Based on Transformer Cross Attention [J]. Computer Science, 2022, 49(2): 107-115. |
[6] | ZHANG Wei-qi, TANG Yi-feng, LI Lin-yan, HU Fu-yuan. Image Stream From Paragraph Method Based on Scene Graph [J]. Computer Science, 2022, 49(1): 233-240. |
[7] | LIN Zhen-xian, ZHANG Meng-kai, WU Cheng-mao, ZHENG Xing-ning. Face Image Inpainting with Generative Adversarial Network [J]. Computer Science, 2021, 48(9): 174-180. |
[8] | XU Tao, TIAN Chong-yang, LIU Cai-hua. Deep Learning for Abnormal Crowd Behavior Detection:A Review [J]. Computer Science, 2021, 48(9): 125-134. |
[9] | WANG Le, YANG Xiao-min. Remote Sensing Image Pansharpening Feedback Network Based on Perceptual Loss [J]. Computer Science, 2021, 48(8): 91-98. |
[10] | PAN Xiao-qin, LU Tian-liang, DU Yan-hui, TONG Xin. Overview of Speech Synthesis and Voice Conversion Technology Based on Deep Learning [J]. Computer Science, 2021, 48(8): 200-208. |
[11] | YE Hong-liang, ZHU Wan-ning, HONG Lei. Music Style Transfer Method with Human Voice Based on CQT and Mel-spectrum [J]. Computer Science, 2021, 48(6A): 326-330. |
[12] | WANG Jian-ming, LI Xiang-feng, YE Lei, ZUO Dun-wen, ZHANG Li-ping. Medical Image Deblur Using Generative Adversarial Networks with Channel Attention [J]. Computer Science, 2021, 48(6A): 101-106. |
[13] | HU Yu-jie, CHANG Jian-hui, ZHANG Jian. Image Synthesis with Semantic Region Style Constraint [J]. Computer Science, 2021, 48(2): 134-141. |
[14] | YU Xiao-ming, HUANG Hua. Research on Application of Improved GAN Network in Generating Short Video [J]. Computer Science, 2021, 48(11A): 625-629. |
[15] | WEI Li-qi, ZHAO Zhi-hong, BAI Guang-wei, SHEN Hang. Location Privacy Game Mechanism Based on Generative Adversarial Networks [J]. Computer Science, 2021, 48(10): 266-271. |
|