Computer Science ›› 2022, Vol. 49 ›› Issue (7): 179-186.doi: 10.11896/jsjkx.210500190
• Artificial Intelligence • Previous Articles Next Articles
JIN Fang-yan1, WANG Xiu-li1,2
CLC Number:
[1]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2017:5998-6008. [2]FU J L,ZHENG H L,MEI T.Look closer to see better:Recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the CVPR.Piscataway,NJ:IEEE,2017:4438-4446. [3]HENDRICKX I,KIM S N,KOZAREVA Z,et al.Semeval-2010 task 8:Multi-way classification of semantic relations between pairs of nominals [C]//Proceedings of the Workshop on Semantic Evaluations:Recent Achievements and Future Directions(SEW-2009).Stroudsburg,PA:ACL,2009:94-99. [4]SAKAJI H,MURONO R,SAKAI H,et al.Discovery of rarecausal knowledge from financial statement summaries[C]//Proceedings of 2017 IEEE Symp Series on Computational Intelligence(SSCI).Piscataway,NJ:IEEE,2017:1-7. [5]IZUMI K,SAKAJI H.Economic causal-chain search using text mining technology[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Amsterdam:Else-vier,2019:23-35. [6]CAO M Y,YANG Z H,LUO L,et al.Joint drug entities and relations extraction based on neural networks[J].Journal of Computer Research and Development,2019,56(7):1432-1440. [7]XU J H,ZUO W L,LIANG S N,et al.Causal relation extraction based on graph attention networks[J].Journal of Computer Research and Development,2020,57(1):159-174. [8]LI Z N,LI Q,ZOU X T,et al.Causality extraction based on self-attentive BiLSTM-CRF with transferred embeddings[J].Neurocomputing,2019,423:207-219. [9]ZHONG J,YU L,TIAN S W,et al.Causal relation extraction of uyghur emergency events based on cascaded model[J].Acta Automatica Sinica,2014,40(4):771-779. [10]ZHOU P,SHI W,TIAN J,et al.Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the ACL.Stroudsburg,PA:ACL,2016:207-212. [11]TIAN S W,ZHOU X F,YU L,et al.Causal relation extraction of uyghur events based on bidirectional long short-term memory model[J].Journal of Electronics and Information Technology,2018,40(1):200-208. [12]NING S M,TENG F,LI T R.Muti-channel self-attention mecha-nism for relation extraction in clinical records[J].Chinese Journal of Computers,2020,43(5):916-929. [13]WANG J,SHI C H,ZHANG J,et al.Document-level event temporal relation extraction with context information[J].Journal of Computer Research and Development,2021,58(11):2475. [14]TOURILLE J,FERRET O,NEVEOL A,et al.Neural architecture for temporal relation extraction:A bi-lstm approach for detecting narrative containers[C]//Proceedings of the 55th AnnualMeeting of the ACL.Stroudsburg,PA:ACL,2017:224-230. [15]FENG X C,HUANG L F,TANG D Y,et al.A language-independent neural network for event detection[C]//Proceedings of the 54th Annual Meeting of the ACL.Stroudsburg,PA:ACL,2016:66-71. [16]GUO F Y,HE R F,DANG J W.Implicit discourse relation reco-gnition via a BiLSTM-CNN architecture with dynamic chunk-based max pooling[J].IEEE Access,2019,7:169281-169292. [17]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision(ECCV).Berlin,Germany:Sprin-ger,2018:3-19. [18]HOCHREITER S,SCHMIDHUBER J.Long short-term me-mory[J].Neural Computation,1997,9(8):1735-1780. [19]PENNINGTON J,SOCHER R,MANNING C.Glove:Globalvectors for word representation[C]//Proceedings of Conference on the 2014 Empirical Methods in Natural Language Processing(EMNLP).Stroudsburg,PA:ACL,2014:1532-1543. [20]LI S,ZHAO Z,HU R F,et al.Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the ACL.Stroudsburg,PA:ACL,2018:138-143. [21]CAO P F,CHEN Y B,LIU K,et al.Adversarial transfer lear-ning for Chinese named entity recognition with self-attention mechanism[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing(EMNLP).Stroudsburg,PA:ACL,2018:182-192. [22]LIU X,OU J,SONG Y,et al.On the Importance of Word and Sentence Representation Learning in Implicit Discourse Relation Classification[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence.Amsterdam:Elsevier,2020:3830-3836. [23]GUO F,HE R,DANG J,et al.Working memory-driven neural networks with a novel knowledge enhancement paradigm for implicit discourse relation recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:7822-7829. [24]JIANG D,HE J.Tree Framework With BERT Word Embedding for the Recognition of Chinese Implicit Discourse Relations[J].IEEE Access,2020,8:162004-162011. [25]FAN Z W,ZHANG M,LI Z H.BiLSTM-based Implicit Discourse Relation Classification Combining Self-attention Mechanism and Syntactic Information[J].Computer Science,2019,46(5):214-220. |
[1] | ZHANG Jia-hao, LIU Feng, QI Jia-yin. Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer [J]. Computer Science, 2022, 49(6A): 370-377. |
[2] | ZHAO Dan-dan, HUANG De-gen, MENG Jia-na, DONG Yu, ZHANG Pan. Chinese Entity Relations Classification Based on BERT-GRU-ATT [J]. Computer Science, 2022, 49(6): 319-325. |
[3] | DING Feng, SUN Xiao. Negative-emotion Opinion Target Extraction Based on Attention and BiLSTM-CRF [J]. Computer Science, 2022, 49(2): 223-230. |
[4] | HU Yan-li, TONG Tan-qian, ZHANG Xiao-yu, PENG Juan. Self-attention-based BGRU and CNN for Sentiment Analysis [J]. Computer Science, 2022, 49(1): 252-258. |
[5] | DONG Zhe, SHAO Ruo-qi, CHEN Yu-liang, ZHAI Wei-feng. Named Entity Recognition in Food Field Based on BERT and Adversarial Training [J]. Computer Science, 2021, 48(5): 247-253. |
[6] | WANG Xi, ZHANG Kai, LI Jun-hui, KONG Fang, ZHANG Yi-tian. Generation of Image Caption of Joint Self-attention and Recurrent Neural Network [J]. Computer Science, 2021, 48(4): 157-163. |
[7] | CHEN Ming-hao, ZHU Yue-fei, LU Bin, ZHAI Yi, LI Ding. Classification of Application Type of Encrypted Traffic Based on Attention-CNN [J]. Computer Science, 2021, 48(4): 325-332. |
[8] | ZHOU Xiao-shi, ZHANG Zi-wei, WEN Juan. Natural Language Steganography Based on Neural Machine Translation [J]. Computer Science, 2021, 48(11A): 557-564. |
[9] | GONG Kou-lin, ZHOU Yu, DING Li, WANG Yong-chao. Vulnerability Detection Using Bidirectional Long Short-term Memory Networks [J]. Computer Science, 2020, 47(5): 295-300. |
[10] | ZHANG Peng-fei, LI Guan-yu, JIA Cai-yan. Truncated Gaussian Distance-based Self-attention Mechanism for Natural Language Inference [J]. Computer Science, 2020, 47(4): 178-183. |
[11] | CUI Dan-dan, LIU Xiu-lei, CHEN Ruo-yu, LIU Xu-hong, LI Zhen, QI Lin. Named Entity Recognition in Field of Ancient Chinese Based on Lattice LSTM [J]. Computer Science, 2020, 47(11A): 18-23. |
[12] | ZHANG Yi-jie, LI Pei-feng, ZHU Qiao-ming. Event Temporal Relation Classification Method Based on Self-attention Mechanism [J]. Computer Science, 2019, 46(8): 244-248. |
[13] |
FAN Zi-wei, ZHANG Min, LI Zheng-hua.
BiLSTM-based Implicit Discourse Relation Classification Combining Self-attention Mechanism and Syntactic Information [J]. Computer Science, 2019, 46(5): 214-220. |
[14] | WANG Zi-niu, JIANG Meng, GAO Jian-ling, CHEN Ya-xian. Chinese Named Entity Recognition Method Based on BERT [J]. Computer Science, 2019, 46(11A): 138-142. |
|