Computer Science ›› 2022, Vol. 49 ›› Issue (2): 12-30.doi: 10.11896/jsjkx.210900146
• Computer Vision: Theory and Application • Previous Articles Next Articles
DONG Lin1, HUANG Li-qing1,2,3, YE Feng1,2,3, HUANG Tian-qiang1,2,3, WENG Bin1,2,3, XU Chao1,2,3
CLC Number:
[1]KARRAS T,LAINE S,AILA T.A style-based generator architecture for generative adversarial networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019. [2]DANG H,LIU F,STEHOUWER J,et al.On the detection ofdigital face manipulation[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020:5780-5789. [3]NEVES J C,TOLOSANA R,VERA-RODRIGUEZ R,et al.GANprintR:Improved fakes and evaluation of the state-of-the-art in face manipulation detection [J].IEEE Journal of Selected Topics in Signal Processing,2020. [4]GOODFELLOW I,OUFET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]//Neural Information Processing Systems (NeuralIPS'14).2014:2672-2680. [5]KARRAS T,AILA T,LAINE S,et al.Progressive growing ofgans for improved quality,stability,and variation[C]//Procee-dings of the International Conference on Learning Representations (ICLR).2018. [6]FaceSwap[EB/OL].(2018-10-29) [2021-10-12].https://github.com/MarekKowalski/FaceSwap. [7]DeepFakes[EB/OL].(2018-10-29)[2021-10-12].https://github.com/deepfakes/faceswap. [8]LI L Z,BAO J,YANG H,et al.FaceShifter:Towards high fide-lity and occlusion aware face swapping[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020. [9]NIRKIN Y,KELLER Y,HASSNER T.Fsgan:Subject agnostic face swapping and reenactment[C]//IEEE International Confe-rence on Computer Vision (ICCV).2019:7184-7193. [10]LIU M,DING Y K,XIA M,et al.Stgan:A unified selectivetransfer network for arbitrary image attribute editing[C]//IEEE Conference on Computer Vision and Pattern Recognition.2019:3673-3682. [11]THIES J,ZOLLHÖFER M,STAMMINGER M,et al.Face-2Face:Real-time face capture and reenactment of RGB videos[C]//IEEE Conference on Computer Vision and Pattern Recognition.2016:2387-2395. [12]THIES J,ZOLLHÖFER M,NIEßNER M.Deferred neural rendering:Image synthesis using neural textures [J].ACM Tran-sactions on Graphics (TOG),2019,38(4):1-12. [13]GONZALEZ-SOSA E,FIERREZ J,VERA-RODRIGUEZ R,et al.Facial soft biometrics for recognition in the wild:Recent works,annotation and COTS evaluation[J]. IEEE Transactions on Information Forensics and Security,2018,13(8):2001-2014. [14]CHOI Y,CHOI M,KIM M,et al.StarGAN:Unified generative adversarial networks for multi-domain image-to-image translation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018. [15]HE Z L,ZUO W M,KAN M,et al.AttGAN:Facial attributeediting by only changing what you want[J]. IEEE Transactions on Image Processing,2019,28(11):5464-5478. [16]FakeApp[EB/OL].(2018-09-01)[2021-10-12].https://www.fakeapp.com. [17]SUWAJANAKORN S,SEITZ S M,KEMELMACHER-SHLIZERMAN I.Synthesizing obama:learning lip sync from audio [J].ACM Transations on Grapgics(TOG),2017,36(4):95.1-95.13. [18]LI Y,CHING M C,LYU S.In ictu oculi:Exposing ai generated fake face videos by detecting eye blinking[C]//2018 IEEE International Workshop on Information Forensics and Security (WIFS).IEEE,2018:1-7. [19]FERNANDES S,RAJ S,ORTIZ E,et al.Predicting heart rate variations of deepfake videos using neural ode[C]//IEEE International Conference on Computer Vision Workshops.2019:1721-1729. [20]YANG X,LI Y,LYU S.Exposing deep fakes using inconsistent head poses[C]//Proceedings of 2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2019:8261-8265. [21]AGARWAL S,FARIDL H.Protecting world leaders againstdeep fakes[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops.2019:38-45. [22]YU N,DAVIS L,FRITZ M.Attributing Fake Images to GANs:Learning and analyzing GAN fingerprints[C]//IEEE International Conference on Computer Vision (ICCV).2019:7556-7566. [23]MI Z J,JIANG X H,SUN T F,et al.Gan-generated image detection with self-attention mechanism against gan generator defect[J].IEEE Journal of Selected Topics in Signal Processing,2020. [24]SUN X W,WU B T,CHEN W.Identifying invariant textureviolation for robust deepfake detection[J].arXiv:2012.10580,2020. [25]CHOLLET F.Xception:Deep learning with depthwise separable convolutions[C]//Proceedings of IEEE Conference on Compu-ter Vision and Pattern Recognition.2017. [26]NGUYEN H H,YAMAGISHI J,ECHIZEN I.Capsule-forensics:Using capsule networks to detect forged images and videos[C]//Proceedings of 2019 IEEE International Conference onAcoustics,Speech and Signal Processing (ICASSP).IEEE,2019:2307-2311. [27]GUERA D,DELP J.Deepfake video detection using recurrent neural networks[C]//2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).IEEE,2018:1-6. [28]SABIR E,CHENG J,JAISWAL A,et al.Recurrent convolu-tional strategies for face manipulation detection in videos[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops.2019:80-87. [29]AMERINI I,GALTERI L,CALDELLI R,et al.Deepfake video detection through optical flow based CNN[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2019:1205-1207. [30]WODAJO D,ATNAFU S.Deepfake video detection using con-volutional vision transformer [J].arXiv:2102.11126,2021. [31]KORSHUNOV P,MARCEL S.Deepfakes:a new threat to face recognition? assessment and detection[J].arXiv:1812.08685,2018. [32]VidTIMIT Audio-Video Dataset[EB/OL]. [2021-10-12].http://conradsanderson.id.au/vidtimit. [33]Faceswap-GAN[EB/OL].(2018-08-27) [2021-10-12].https://github.com/shaoanlu/faceswap-GAN. [34]ROSSLER A,COZZOLINO D,VERDOLIVA L,et al.FaceForensics++:Learning to detect manipulated facial images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).2019:1-11. [35]LI X R,JI S L,WU C M,et al.Survey on deepfakes and detection Techniques [J].Journal of Software,2021,32(2):496-518. [36]Google AI blog.Contributing data to deepfake detection re-search [EB/OL].[2021-10-21].https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html. [37]LI Y,SUN P,QI H G,et al.Celeb-DF:A large-scale challenging dataset for deepfake forensics[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020. [38]DOLHANSKY B,HOWES R,PFLAUM B,et al.The deepfake detection challenge (dfdc) preview dataset [J].arXiv:1910.08854,2019. [39]DOLHANSKY B,BITTON J,PFLAUM B,et al.The DeepFake Detection Challenge (DFDC) dataset [J].arXiv:2006.07397,2020. [40]ZI B J,CHANG M H,CHEN J J,et al.WildDeepfake:A challenging real-world dataset for deepfake detection[J].ACM MM,2020. [41]JIANG L M,LI R,WU W,et al.Deeperforensics-1.0:A large-scale dataset for real-world face forgery detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020:2886-2895. [42]ZHOU T F,WANG W G,LIANG Z Y,et al.Face forensics in the wild[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021. [43]PEROV I,GAO D H,CHERVONIY N,et al.DeepFaceLab:A simple,flexible and extensible face swapping framework[J].arXiv:2005.05535,2020. [44]HE Y N,GAN B,CHEN S Y,et al.ForgeryNet:A versatilebenchmark for comprehensive forgery analysis[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021. [45]LE T N,NGUYEN H H,YAMAGISHI J,et al.OpenForensics:Large-Scale challenging dataset for multi-face forgery detection and segmentation in-the-wild [J].arXiv:2107.14480,2021. [46]ZAKHAROV E,SHYSHEYA A,BURKOV E,et al.Few-shot adversarial learning of realistic neural talking head models[C]//IEEE International Conference on Computer Vision (ICCV).2019. [47]POLYAK A,WOLF L,TAIGMAN Y.TTS skins:Speaker conversion via asr[J].arXiv:1904.08983,2019. [48]CAO H W,COOPER D G,KEUTMANN M K,et al.Crema-d:Crowd-sourced emotional multimodal actors dataset[J].IEEE Transactions on Affective Computing,2014,5(4):377-390. [49]LIVINGSTONE S R,RUSSO F A.The ryerson audio-visual da-tabase of emotional speech and song (RAVDESS):A dynamic,multimodal set of facial andvocal expressions in North American English[J].PLOSONE,2018,13(5):e0196391. [50]CHUNG J S,NAGRANI A,ZISSERMAN A.Voxceleb2:Deep speaker recognition[J].arXiv:1806.05622,2018. [51]EPHRAT A,MOSSERI I,LANG O,et al.Looking to listen at the cocktail party:A speaker-independent audio-visual model for speech separation[J].arXiv:1804.03619,2018. [52]SIAROHIN A,LATHUILIÈRE S,TULYAKOV S,et al.First order motion model for image animation[C]//Neural Information Processing Systems (NeuralIPS'19).2019. [53]KARRAS T,LAINE S,AITTALA M,et al.Analyzing and improving the image quality of stylegan[C]//IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2020. [54]CHEN L,MADDOX R K,DUAN Z Y,et al.Hierarchical cross-modal talking face generation with dynamic pixel-wise loss[C]//IEEE Conference on Computer Vision and Pattern Recognition.2019. [55]CHOI Y,UH Y,YOO J,et al.Stargan v2:Diverse image synthesis for multiple domains[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020:188-197. [56]FRIED O,TEWARI A,ZOLLHOFER M,et al.Text-based editing of talking-head video[J].ACM Transactions on Graphics (TOG),2019,38(4):1-14. [57]DENG Y,YANG J L,CHEN D,et al.Disentangled and controllable face image generation via 3d imitative-contrastive learning[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020. [58]JO Y,PARK J.Sc-fegan:Face editing generative adversarial network with user's sketch and color[C]//ICCV.2019. [59]LEE C H,LIU Z W,WU L Y,et al.Maskgan:Towards diverse and interactive facial image manipulation[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020. [60]KUZNETSOVA A,ROM H,ALLDRIN N,et al.The open images dataset v4:Unified image classification,object detection,and visual relationship detection at scale [J].International Journal of Computer Vision,2020. [61]SHEN Y J,GU J J,TANG X O,et al.Interpreting the latent space of gans for semantic face editing[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020. [62]PIDHORSKYI S,ADJEROH D,DORETTO G.Adversarial latent autoencoders[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020. [63]NIRKIN Y,MASI I,TUAN A T,et al.On face segmentation,face swapping,and face perception[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018).IEEE,2018:98-105. [64]BLANZ V,SCHERBAUM K,VETTER T,et al.Exchangingfaces in images[C]//EuroGraphics.2004. [65]ZHANG H,CISSE M,DAUPHIN Y N,et al.Mixup:Beyond empirical risk minimization[C]//Proceedings of the Internatio-nal Conference on Learning Representations (ICLR).2018. [66]YUN S,HAN D,OH S J,et al.CutMix:Regularization strategy to train strong classifiers with localization features [C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).2019. [67]CUBUK E D,ZOPH B,MAN D,et al.AutoAugment:Learning augmentation policies from data[C]//IEEE Conference on Computer Vision and Pattern Recognition.2019. [68]CUBUK E D,ZOPH B,SHLENS J,et al.RandAugment:Practical automated data augmentation with a reduced search space [J].arXiv:1909.13719,2019. [69]WANG S Y,WANG O,ZHANG R,et al.CNN-generated images are surprisingly easy to spot for now[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020:8692-8701. [70]WANG J,WU Z X,CHEN J J,et al.M2TR:Multi-modal multi-scale transformers for deepfakedetection[J].arXiv:2104.09770,2021. [71]LI Y Z,LYU S W.Exposing deepfake videos by detecting face warping artifacts[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops.2019:46-52. [72]HULZEBOSCH N,IBRAHIMI S,WORRING M.DetectingCNN-generated facial images in real-world scenarios[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020. [73]COZZOLINO D,THIES J,RÖSSLER A,et al.ForensicTransfer:Weakly-supervised domain adaptation for forgery detection [J].arXiv:1812.02510,2018. [74]XUAN X H,PENG B,WANG W,et al.On the generalization of GAN image forensics[C]//Proceedings of the Chinese Confe-rence on Biometric Recognition.2019:134-141. [75]HE Y,YU N,KEUPER M,et al.Beyong the spectrum:Detecting deepfakes via reSynthesis[C]//International Joint Confe-rence on Artificial Intelligence(IJCAI).2021. [76]JEON H,BANG Y,KIM J,et al.T-GD:Transferable GAN-ge-nerated images detection framework[C]//ICML.2020. [77]GUO Z Q,YANG G B,CHEN J Y,et al.Fake face detection viaadaptive manipulation traces extraction network[J].arXiv:2005.04945,2020. [78]LI Y Q,BAI T.Deepfake detection method in videos based on convolutional LSTM [J].Information Technology and Network Security,2021,40(40):28-32. [79]DEVRIES T,TAYLOR G W.Improved Regularization of Con-volutional Neural Networks with Cutout [J].arXiv:1708.04552,2017. [80]YANG C,LIM S N.One-shot domain adaptation for face gene-ration[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020. [81]BONDI L,CANNAS E D,BESTAGINI P,et al.Training strategies and data augmentations in CNN-based deepfake video detection [J].arXiv:2011.07792,2020. [82]QIAN Y Y,YIN G J,SHENG L,et al.Thinking in frequency:Face forgery detection by mining frequency-aware clues[C]//Proceedings of the European Conference on Computer Vision (ECCV).2020. [83]YU Y,NI R G,ZHAO Y.Mining Generalized Features for Detecting AI-Manipulated Fake Faces[J].arXiv:2010.14129,2020. [84]CHEN Y P,FAN H Q,XU B,et al.Drop an octave:Reducing spatial redundancy in convolutional neural networks with octave convolution[C]//Proceedings of the IEEE International Confe-rence on Computer Vision (ICCV).2019. [85]LIU H G,LI X D,ZHOU W B,et al.Spatial-Phase shallowlearning:Rethinking Face Forgery Detection in Frequency Domain[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021. [86]ZHOU P,HAN X T,MORARIU V I,et al.Two-stream neural networks for tampered face detection[C]//IEEE Conferenceon Computer Vision and Pattern Recognition Workshops.2017:1831-1839. [87]AFCHAR D,NOZICK V,YAMAGISHI J,et al.Mesonet:acompact facial video forgery detection network[C]//IEEE International Workshop on Information Forensics and Security (WIFS'18).2018:1-7. [88]MASI I,KILLEKAR A,MASCARENHAS R M,et al.Two-branch recurrent network for isolating deepfakes in videos[C]//16th European Conference on Computer Vision (ECCV).2020. [89]NGUYEN H H,FANG F M,YAMAGISHI J,et al.Multi-task learning for detecting and segmenting manipulated facial images and videos[C]//Proceedings of the IEEE International Confe-rence on Biometrics:Theory,Applications and Systems (BTAS).2019. [90]LI X D,LANG Y N,CHEN Y F,et al.Sharp multiple instance learning for deepfake video detection[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:1864-1872. [91]KHODABAKHSH A,RAMACHANDRA A,RAJA A,et al.Fake face detection methods:Can they be generalized[C]//2018 International Conference of the Biometrics Special Interest Group.Darmstadt,Germany,2018:1-6. [92]LIU Z Z,QI X J,TORR P.Global texture enhancement for fake face detection in the wild[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020. [93]ZHAO H Q,ZHOU W B,CHEN D D,et al.Multi-attentional deepfake detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021. [94]LI L,BAO J,ZHANG T,et al.Face x-ray for more general face forgery detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.2020. [95]HU Y J,GAO Y F,LIU B B,et al.Deepfake videos detectionbased on image segmentation with deep neural networks[J].Journal of Electronics & Information Technology,2021,43(1):162-170. [96]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [97]SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:Aunified embedding for face recognition and clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition.2015:815-823. [98]ZHAO T C,XU X,XU M Z,et al.Learning to recognize patchwise consistency for deepfake detection[J].arXiv:2012.09311,2020. [99]SHANG Z H,XIE H T,ZHA Z J,et al.PRRNet:Pixel-Region relation network for face forgery detection [J].Pattern Recognition,2021,116:107950. [100]YU C M,CHANG C T,TI Y W.Detecting deepfake-forged contents with separable convolutional neural network and image segmentation[J].arXiv:1912.12184,2019. [101]CHEN Z H,YANG H.Attentive semantic exploring formani-pulated face detection[C]//IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).2021:1985-1989. [102]DU M,PENTYALA S,LI Y N,et al.Towards generalizabledeepfake detection with locality-aware AutoEncoder[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM'20).2020. [103]SUN Z,HAN Y J,HUA Z Y,et al.Improving the efficiency and robustness of deepfakes detection through precise geometric features[C]//IIEEE Conference on Computer Vision and Pattern Recognition.2021. [104]CALDELLI R,GALTERI L,AMERINI I,et al.Optical flowbased CNN for detection of unlearnt deepfake manipulations [J].Pattern Recognition Letters,2021,146(10):31-37. [105]GANIYUSUFOGLUA I,NGÔ L M,SAVOV N,et al.Spatio-temporal features for generalized detection of deepfake videos [C]//Computer Vision and Image Understanding.2020. [106]TRINH L,TSANG M,RAMBHATLA S,et al.Interpretableand trust worthy deepfake detection via dynamic prototypes[C]//2021 IEEE Winter Conference on Applications of Computer Vision (WACV'21).2021. [107]GU Z H,CHEN Y,YAO T P,et al.Spatiotemporal Inconsistency Learning for DeepFake Video Detection[J].arXiv:2109.01860,2021. [108]HAN Y C,HUA G,ZHANG H J.Inception3D net based video RE forgery detection jointly exploiting eye and mouth areas[J].Journal of Signal Processing,2021,37(4):567-577. [109]XING H,LI M.Deepfake Video Detection Based on 3D Convolutional Neural Networks [J].Computer Science,2021,48(7):86-92. [110]KHAN S A,DAI H.Video Transformer for Deepfake Detection with Incremental Learning[C]//Proceedings of the 29th ACM International Conference on Multimedia(MM '21).ACM,2021. [111]GUO J Z,ZHU X G,LEI Z.3DDFA[EB/OL].[2021-10-12].https://github.com/ cleardusk/3DDFA. [112]GUO J Z,ZHU X G,YANG Y,et al.Towards fast,accurate and stable 3D dense face alignment[C]//Proceedings of the European Conference on Computer Vision (ECCV).2020. [113]LI J M,XIE H T,LI J H,et al.Frequency-aware discriminative feature learning supervised by single-center loss for face for-gerydetection[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021. [114]CHEN S,YAO T P,CHEN Y,et al.Local Relation learning for face forgery detection[C]//AAAI.2021. [115]LUO Y C,ZHANG Y,YAN J C,et al.Generalizing face forgery detection with high-frequency features[J].arXiv:2103.12376,2021. [116]FRIDRICH J,KODOVSKY J.Rich models for steganalysis of digital images [J].IEEE Transactions on Information Forensics and Security,2012,7(3):868-882. [117]CHINTHA A,RAO A,SOHRAWARDI S,et al.Leveraging edges and optical flow on faces for deepfake detection[C]//2020 IEEE International Joint Conference on Biometrics (IJCB).2020. [118]WANG G X,ZHOU J H,WU Y.Exposing deep-faked videos by anomalous co-motion pattern detection [J].arXiv:2008.04848,2020. [119]HALIASSOS A,VOUGIOUKAS K,PETRIDIS S,et al.LipsDon't Lie:A generalisable and robust approach to face forgery detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021. [120]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].PNAS,2017,114(13):3521-3526. [121]ANEJA S,NIEßNER M.Generalized zero and few-shot transfer for facial forgery detection [J].arXiv:2006.11863,2020. [122]TARIQ S,LEE S,WOO S S.A convolutional LSTM based residual network for deepfake video detection [J].arXiv:2009.07480,2020. [123]TARIQ S,LEE S,WOO S S.One detector to rule them all:Towards a general deepfake attack detection framework[C]//Proceedingsof the Web Conference.2021. [124]LEE S,TARIQ S,KIM J,et al.TAR:Generalized forensicframework to detect deepfakes using weakly supervised lear-ning[C]//IFIP-SEC.2021. [125]TARIQ S,LEE S,KIM H,et al.Gan is a friend or foe?:a frame-work to detect various fake face images[C]//Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.ACM,2019:1296-1303. [126]SUN K,LIU H,YE Q X,et al.Domain general face forgery detection by learning to weight[C]//AAAI Conference on Artificial Intelligence.2021:2638-2646. [127]MARRA F,SALTORI C,BOATO G,et al.Incremental learning for the detection andclassification of GAN-generated images [J].arXiv:1910.01568,2019. [128]REBUFFI S A,KOLESNIKOV A,SPERL G,et al.iCaRL:Incremental classifier and representation learning[C]//IEEE Conference on Computer Vision and Pattern Recognition.2017:2001-2010. [129]KIM M,TARIQ S,WOO S S.CoReD:Generalizing fake media detection with continual representation using distillation[C]//29th ACM International Conference on Multimedia (ACMMM '21).2021. [130]DONG X Y,BAO J M,CHEN D D,et al.Identity-driven deepfake detection[J].arXiv:2012.03930,2020. [131]HOWARD A G,ZHU M L,CHEN B,et al.Mobilenets:Effi-cient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [132]TANAKA M,KIYA H.Fake-image detection with robust hashing[C]//2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech).2021. [133]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//NIPS.2017:5998-6008. [134]MIAO C T,CHU Q,LI W H,et al.Towards generalizable and robust face manipulation detection via bag-of-local-feature[J].arXiv:2103.07915,2021. [135]FUNG S,LU X Q,ZHANG C,et al.DeepfakeUCL:Deepfake detection via unsupervised contrastive learning[C]//The annual International Joint Conference on Neural Networks (IJCNN).2021. [136]CHEN Q F,KOLTUN V.Photographic image synthesis withcascaded refinement networks[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).2017. [137]LI K,ZHANG T H,MALIK J.Diverse image synthesis from semantic layouts via conditional IMLE[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).2019. [138]CHEN C,CHEN Q F,XU J,et al.Learning to see in the dark[C]//IEEE Conference on Computer Vision and Pattern Recognition.2018. [139]DAI T,CAI J R,ZHANG Y B,et al.Second-order attention net-work for single image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition.2019. [140]GULRAJANI I,AHMED F,ARJOVSKY M,et al.Improvedtraining of wasserstein gans[C]//Neural Information Proces-sing Systems.2017:5767-5777. [141]PUMAROLA A,AGUDO A,MARTINEZ A M,et al.Ganimation:Anatomically aware facial animation from a single image[C]//Proceedings of the European conference on computer vision (ECCV).2018:818-833. [142]CHEN Y C,XU X G,TIAN Z T,et al.Homomorphic latentspace interpolation for unpaired image-to-image translation[C]//IEEE Conference on Computer Vision and Pattern Recognition.2019:2408-2416. [143]ZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//IEEE Confe-rence on Computer Vision and Pattern Recognition.2016:2818-2826. [144]IIZUKA S,SIMO-SERRA E,ISHIKAWA H.Globally and locally consistent image completion [J].ACM Transactions on Graphics (TOG),2017,36(4):107.1-107.14. [145]YU J H,LIN Z,YANG J M,et al.Generative image inpainting with contextual attention[C]//IEEE Conference on Computer Vision and Pattern Recognition.2018. [146]RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [147]KINGMA D P,DHARIWAL P.Glow:generative flow with invertible 1×1 convolutions[C]//NIPS.2018:10236-10245. [148]LI X R,YU K.A Deepfakes detection technique based on two-stream network[J].Journal of Cyber Security,2020,5(2):84-91. [149]CHEN T,KUMAR A,NAGARSHETH P,et al.Generalization of audio deepfake detection[C]//Proceedings of the Odyssey 2020 Speaker and Language Recognition Workshop.2020:132-137. [150]JIA Z Y,FANG H,ZHANG W M.MBRS:Enhancing robustness of DNN-based watermarking by mini-batch of real and si-mulated JPEG compression[C]//29th ACM International Confe-rence on Multimedia.2021. [151]BAO Y X,LU T L,DU Y H.Overview of Deepfake Video Detection Technology [J].Computer Science,2020,47(9):283-292. |
[1] | BAO Yu-xuan, LU Tian-liang, DU Yan-hui. Overview of Deepfake Video Detection Technology [J]. Computer Science, 2020, 47(9): 283-292. |
[2] | ZHANG Wang-ce, FAN Jing, WANG Bo-ru and NI Min. (α,k)-anonymized Model for Missing Data [J]. Computer Science, 2020, 47(6A): 395-399. |
[3] | CAO Min-zi, ZHANG Lin-lin, BI Xue-hua, ZHAO Kai. Personalized (α,l)-diversity k-anonymity Model for Privacy Preservation [J]. Computer Science, 2018, 45(11): 180-186. |
[4] | WANG Li-wen. Design and Implementation of Arbitrage Trading System Based on Generalization [J]. Computer Science, 2017, 44(Z6): 529-533. |
[5] | CAI Yi, ZHU Xiu-fang, SUN Zhang-li and CHEN A-jiao. Semi-supervised and Ensemble Learning:A Review [J]. Computer Science, 2017, 44(Z6): 7-13. |
[6] | MENG Xiao-long YANG Yan WANG Hong-jun XIAO Wen-chao. Occasion Determination of Clustering Ensemble [J]. Computer Science, 2015, 42(7): 48-51. |
[7] | XU Hua. Integration of Dual-layer Fuzzy System with Center-constrained Minimal Enclosing Ball [J]. Computer Science, 2014, 41(12): 172-175. |
[8] | SUN Chong, LU Yan-sheng. Clustering-based Algorithms to Semantic Summarizing the Table with Multi-attributes' Hierarchical Structures [J]. Computer Science, 2012, 39(3): 170-173. |
[9] | YU Xu,YANG Jing,XIE Zhi-qiang. Research on Virtual Sample Generation Technology [J]. Computer Science, 2011, 38(3): 16-19. |
[10] | . Cloud-based Architecture for Media Forensics [J]. Computer Science, 2011, 38(12): 28-30. |
[11] | LI Jun-huai,LIU Hai-ling,PING Jun,ZHANG Jing,CHEN Xiao-ming. Method of Association Rule Privacy Protection Based on Temporal Constraint [J]. Computer Science, 2009, 36(9): 201-204. |
[12] | LIU Jin-fu,YU Da-ren. Structural Risk Minimization for Controlling Generalization Performance of Rough Set Learning Machine [J]. Computer Science, 2009, 36(12): 210-213. |
[13] | . [J]. Computer Science, 2008, 35(3): 158-160. |
[14] | . [J]. Computer Science, 2008, 35(11): 137-138. |
[15] | . [J]. Computer Science, 2006, 33(2): 201-204. |
|