Computer Science ›› 2022, Vol. 49 ›› Issue (7): 350-356.doi: 10.11896/jsjkx.210900229
• Information Security • Previous Articles Next Articles
HUANG Jue, ZHOU Chun-lai
CLC Number:
[1]GEORGINA E,GARY K,ADAM D S,et al.Differentially Private Survey Research[DB/OL].(2021-03-21)[2021-06-18].https://j.mp/3jAYXo3. [2]SAMARATI P,SWEENEY L.Generalizing Data to Provide Anonymity when Disclosing Information[C]//Proceedings of the Seventeenth ACM-SIGACT-SIGMOD-SIGART Symposium on Principles Systems.New York:ACM,1998:98-188. [3]MACHANAVAJJHALA A,KIFER D,GEHRKE J,et al.l-Di-versity:Privacy Beyond k-anonymity[C]//Proceedings of the 22nd International Conference on Data Engineering. Atlanta:IEEE Press,2006:24-24. [4]LI N,LI T,VENKATASUBRAMANIAN S.t-Closeness:privacy Beyond k-Anonymity and l-diversity[C]//Proceedings of the 23rd IEEE International Conference on Data Engineering(ICDE).IEEE,2007:106-115. [5]GEORGINA E,GARY K,MARGARET S,et al.StatisticallyValid Inferences from Privacy Protected Data[DB/OL].https://j.mp/2qkWjfj. [6]DWORK C.Differential Privacy[C]//Automata,Languages and Programming.Venice:Springer,2006:1-12. [7]WARNER S L.Randomized Response:A Survey Technique for Eliminating Evasive Answer Bias[J].Journal of the American Statistical Association,1965,60(309):63-69. [8]YOSHUA B,REJEAN D,PASCAL V,et al.A Neural Probabilistic Language Model[J].Journal of Machine Learning Research(JMLR),2003,3:1137-1155. [9]WANG N,XIAO X K,YANG Y,et al.Collecting and Analyzing Multidimensional Data with Local Differential Privacy[C]//IEEE 35th International Conference on Data Enginee Ring(ICDE).Macao,China,2019:638-649. [10]WANG J N,KRASKA T,FRANKLIN M J,et al.CrowdER:Crowdsourcing Entity Resolution[C]//Proceedings of the VLDB Endowment,Istanbul:VLDB Endowment,2012:1483-1494. [11]ULFAR E,VASYL P,ALEKSANDRA K.RAPPOR:Rando-mized Aggregatable Privacy-Preserving Ordinal Response[C]//Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security.New York:ACM 2014:1054-1067. [12]ROBERT T.Regression Shrinkage and Selection Via the Lasso[J].Journal of the Royal Statistical Society:series B,1994,58(1):267-288. [13]JOHN C D,MICHAEL I J.Local Privacy and Statistical Mini-max Rates[C]//Proceedings of the IEEE 54th Annual Symposium on Foundations of Computer Science.New York:IEEE Press,2013:1592-1592. [14]DING B,WINSLETT M,HAN J,et al.Differentially Private Data Cubes:Optimizing Noise Sources and Consistency[C]//Proceedings of the 2011 ACM SIGMOD International Confe-rence on Management of Data.NEW YORK:ACM,2011:217-228. [15]HARDT M,ROTHBLUM G N.A Multiplicative WeightsMechanism for Privacy-Preserving Data Analysis[C]//Procee-dings of the 51st Annual IEEE Symposium on Foundations of Computer Science.New York:IEEE Press,2010:61-70. [16]OBERSKI D L,KREUTERM F.Differential Privacy and Social Science:An Urgent Puzzle[EB/OL].https://doi.org/10.1162/99608f92.63a22079. [17]HARDT M,LIGETT K,MCSHERRY F.A Simple and Practical Algorithm for Differentially Private Data Release[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems.New York:Curran Associates Inc,2012:2339-2347. [18]YE Q Q,MENG X F,ZHU M J,et al.Survey on Local Differen-tial Privacy[J].Journal of Software,2018,29(7):1981-2005. |
[1] | XU Mao,HOU Jin,WU Pei-jun,LIU Yu-ling,LV Zhi-liang. Convolutional Neural Networks Based on Time-Frequency Characteristics for Modulation Classification [J]. Computer Science, 2020, 47(2): 175-179. |
|