Computer Science ›› 2023, Vol. 50 ›› Issue (6A): 220700024-4.doi: 10.11896/jsjkx.220700024

• Network & Communication • Previous Articles     Next Articles

Controlled Short-distance Quantum Teleportation for Arbitrary Two-particles State in Pauli Noise Environment

XIANG Shengjian   

  1. School of Mathematical Science,Sichuan Normal University,Chengdu 610066,China
  • Online:2023-06-10 Published:2023-06-12
  • About author:XIANG Shengjian,born in 1964,Ph.D,professor,is a member of China Computer Federation.His main reaserch interests include quantum communication and information technology.
  • Supported by:
    Key R&D Program of Sichuan Province(2020YFG0290) and Chengdu Science and Technology Plan(2021-YF09-00116-GX).

Abstract: The quantum teleportation is one of the hot topics in the quantum communication.The short-distance teleportation,different from the traditional teleportation,can further save costly quantum entanglement resource based on the restriction in the distance.However,this also increases the probability in terms of cheating for the participants.Therefore,this paper proposes another short-distance quantum teleportation for arbitrary two-particles state scheme with a controller in order to enhance the safety.At the same time,it is impossible for quantum teleportation in an ideal environment,due to a fact that the particle will be ine-vitably affected by the noise channel during the distributing period.This paper also analyzes the influence of Pauli noise,which is a widely used noise channel model,on the fidelity of a two-particles state.As a result,the different concurrence in the two-particles state can generate different fidelity in some typical Pauli noise channel.This research can provide some theoretical value in the aspect of quantum communication network and the experiment research.

Key words: Quantum teleportation, Short-distance, Controller, Safety, Pauli noise, Fidelity

CLC Number: 

  • TP309
[1]BENNETT C H,BRASSARD G,CREPEAU C,et al.Telepor-ting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Physics Review Letter,1993,70(13):1895-1899.
[2]LIU J C,LI Y H,NIE Y Y.Controlled Teleportation of an Arbitrary Two-Particle Pure or Mixed State by Using a Five-Qubit Cluster State[J].International Journal of Theoretical Physics,2010,49(8):1976-1784.
[3]MAN Z X,XIA Y J,AN N B.Genuine multiqubit entanglement and controlled teleportation[J].Physical Review A,2007,75(5):052306.
[4]ZHANG Z J.Controlled teleportation of an arbitrary n-qubitquantum information using quantum secret sharing of classical message[J].Physics letters A,2006,352(1/2):55-58.
[5]YANG G,LIAN B W,NIE M,et al.Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak mea-surement[J].Chinese Physics B,2017,26(4):040305.
[6]ZHA X W,ZOU Z C,QI J X,et al.Bidirectional quantum controlled teleportation via five-qubit cluster state[J].International Journal of Theoretical Physics,2013,52(6):1740-744.
[7]HASSANPOUR S,HOUSHMAND M.Bidirectional teleporta-tion of a pure EPR state by using GHZ states[J].Quantum Information Processing,2016,15(2):905-912.
[8]PENG J Y,BAI M Q,MO Z W.Bidirectional quantum statessharing[J].International Journal of Theoretical Physics,2016,55(5):2481-2489.
[9]CHEN Y X,DU J,LIU S Y,et al.Cyclic quantum teleportation[J].Quantum Information Processing,2017,16(8):201.
[10]PENG J Y,BAI M Q,MO Z W.Deterministic Multi-hop Controlled Teleportation of Arbitrary Single-Qubit State[J].International Journal of Theoretical Physics,2017,56(10):3348-3458.
[11]ZHAN H T,Y X T,XIONG P Y,et al.Multi-hop teleportation based on W state and EPR pairs[J].Chin Phys B,2016,25(5):50305-050305.
[12]ZHU F,CHEN D J Z,CHEN X B,et al.Probabilistic teleportation of multi-particle partially entangled state[J].Chin Phys B,2008,17(3):771-777.
[13]YAN F,YAN T.Probabilistic teleportation via a non-maximally entangled GHZ state[J].Chinese Science Bulletin,2010,55(10):902-906.
[14]KARLSSON A,BOURENNANE M.Quantum teleportationusing three-particle entanglement[J].Physical Review A,1998,58(6):4394-4400.
[15]JOO J,PARK Y J,OH S,et al.Quantum teleportation via a W state[J].New Journal of Physics,2003,5(1):136.
[16]AGRAWAL P,PATI A.Perfect teleportation and superdensecoding with $W$ states[J].Physical Review A,2006,74(6):062320.
[17]TAN X,ZHANG X,FANG J.Perfect quantum teleportation by four-particle cluster state[J].Information Processing Letters,2016,116(5):347-350.
[18]PIRANDOLA S,EISERT J,WEEDBROOK C,et al.Advances in quantum teleportation[J].Nature Photonics,2015,9(10):641-652.
[19]TAN X D,HAN J Q.Short-Distance Teleportation of an Arbitrary Two-Qubit State Via a Bell State[J].International Journal of Theoretical Physics,2021,60(4):1275-1282.
[20]XIONG S Y,TANG L,ZHANG Q,et al.The rotation scheme of quantum states based on EPR pairs[J].Modern Physics Letters B,2022:2150579.
[21]OH S,LEE S,LEE H W.Fidelity of quantum teleportationthrough noisy channels[J].Physical Review A,2002,66(2):022316.
[22]DONG L,WANG J X,SHEN H Z,et al.Deterministic transmission of an arbitrary single-photon polarization state through bit-flip error channel[J].Quantum Information Processing,2014,13(6):1413-1424.
[23]TERHAL B M.Quantum error correction for quantum memories[J].Reviews of Modern Physics,2015,87(2):307-346.
[24]SHOR P W.Scheme for reducing decoherence in quantum computer memory[J].Physical Review A,1995,52(4):R2493-R2496.
[25]DONG L,WANG J X,LI Q Y,et al.Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem[J].Optics Letters,2016,41(5):1030-1033.
[26]XU G F,ZHANG J,TONG D M,et al.Nonadiabatic Holonomic Quantum Computation in Decoherence-Free Subspaces[J].Physical Review Letters,2012,109(17):170501.
[27]LI C K,NAKAHARA M,POON Y T,et al.Recursive encoding and decoding of the noiseless subsystem and decoherence-free subspace[J].Physical Review A,2011,84(4):044301.
[28]XIU X M,LI Q Y,LIN Y F,et al.Preparation of four-photon polarization-entangled decoherence-free states employing weak cross-Kerr nonlinearities[J].Physical Review A,2016,94(4):042321.
[29]PAN J W,SIMON C,BRUKNER Č,et al.Entanglement purification for quantum communication[J].Nature,2001,410(6832):1067-1070.
[30]REN B C,DU F F,DENG F G.Two-step hyperentanglement purification with the quantum-state-joining method[J].Physical Review A,2014,90(5):052309.
[31]KIM Y S,LEE J C,KWON O,et al.Protecting entanglement from decoherence using weak measurement and quantum mea-surement reversal[J].Nature Physics,2012,8(2):117-20.
[32]KIM Y S,CHO Y W,RA Y S,et al.Reversing the weak quantum measurement for a photonic qubit[J].Optics Express,2009,17(14):11978-11985.
[33]KOROTKOV A N,JORDAN A N.Undoing a Weak Quantum Measurement of a Solid-State Qubit[J].Physical Review Letters,2006,97(16):166805.
[34]LEE J C,JEONG Y C,KIM Y S,et al.Experimental demonstration of decoherence suppression via quantum measurement reversal[J].Optics Express,2011,19(17):16309-16316.
[35]YANG R K,JIANG L Z.Approximation of the quantum capacity of the general Pauli channel[J].Journal of Quantum Optics,2014(1):40-45.
[36]UHLMANN A.The “transition probability” in the state space of a*-algebra[J].Reports on Mathematical Physics,1976,9(2):273-279.
[37]JOZSA R.Fidelity for mixed quantum states[J].Journal ofModern Optics,1994,41(12):2315-2323.
[1] XU Changqian, WANG Dong, SU Feng, ZHANG Jun, BIAN Haifeng, LI Long. Image Recognition Method of Transmission Line Safety Risk Assessment Based on MultidimensionalData Coupling [J]. Computer Science, 2023, 50(6A): 220500032-6.
[2] PAN Tao, TONG Xiaojun, ZHANG Miao, WANG Zhu. Image Compression and Encryption Based on Compressive Sensing and Hyperchaotic System [J]. Computer Science, 2023, 50(6A): 220200121-6.
[3] WANG Ming, WU Wen-fang, WANG Da-ling, FENG Shi, ZHANG Yi-fei. Generative Link Tree:A Counterfactual Explanation Generation Approach with High Data Fidelity [J]. Computer Science, 2022, 49(9): 33-40.
[4] CHEN Yong-ping, ZHU Jian-qing, XIE Yi, WU Han-xiao, ZENG Huan-qiang. Real-time Helmet Detection Algorithm Based on Circumcircle Radius Difference Loss [J]. Computer Science, 2022, 49(6A): 424-428.
[5] CHEN Long-hua, LI Hong-lin, YANG Han-li, XIAN Guang-mei, ZHANG Yan-qi. Vehicle Controller of Pure Electric Vehicles Based on CAN Bus [J]. Computer Science, 2022, 49(6A): 802-807.
[6] SUN Xuan, WANG Huan-xiao. Capability Building for Government Big Data Safety Protection:Discussions from Technologicaland Management Perspectives [J]. Computer Science, 2022, 49(4): 67-73.
[7] WANG Wen-xuan, HU Jun, HU Jian-cheng, KANG Jie-xiang, WANG Hui, GAO Zhong-jie. Test Case Generation Method Oriented to Tabular Form Formal Requirement Model [J]. Computer Science, 2021, 48(5): 16-24.
[8] YANG Zhi-bin, YANG Yong-qiang, YUAN Sheng-hao, ZHOU Yong, XUE Lei, CHENG Gao-hui. Terminology Recommendation and Requirement Classification Method for Safety-critical Software [J]. Computer Science, 2021, 48(5): 32-44.
[9] SHI Tie-zhu, QIAN Jun-yan, PAN Hai-yu. Fuzzy Safety and Liveness Properties [J]. Computer Science, 2021, 48(4): 31-36.
[10] LUO Chen, HU Ming, XIAO Huan-quan, ZHONG Lin-feng. Research on Behavior of Travel Mode Choice Under Duration of Public Health Emergencies Basedon SEM Model [J]. Computer Science, 2021, 48(11A): 655-658.
[11] JIN Yu-fang, WU Xiang, DONG Hui, YU Li, ZHANG Wen-an. Improved YOLO v4 Algorithm for Safety Helmet Wearing Detection [J]. Computer Science, 2021, 48(11): 268-275.
[12] SUN Xiao-xiang, CHEN Zhe. Study on Correctness of Memory Security Dynamic Detection Algorithm Based on Theorem Proving [J]. Computer Science, 2021, 48(1): 268-272.
[13] XU Shou-kun, NI Chu-han, JI Chen-chen, LI Ning. Image Caption of Safety Helmets Wearing in Construction Scene Based on YOLOv3 [J]. Computer Science, 2020, 47(8): 233-240.
[14] JIA Wu-cai, LV Guang-hong, WANG Gui-zhi, SONG Yuan-long. Review on Placement of Multiple Controllers in SDN [J]. Computer Science, 2020, 47(7): 206-212.
[15] WU Hong-tao, LIU Li-yuan, MENG Ying, RONG Ya-peng and LI Lu-kai. Novel Threat Degree Analysis Method for Scattered ObJects in Road Traffic Based on Dynamic Multi-feature Fusion [J]. Computer Science, 2020, 47(6A): 196-205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!