Computer Science ›› 2023, Vol. 50 ›› Issue (7): 119-128.doi: 10.11896/jsjkx.220800024
• Computer Graphics & Multimedia • Previous Articles Next Articles
LI Lin1, XIE Bin2, HAN Liwen1,3,4
CLC Number:
[1]STANCU D.Approximation of functions by a new class of liner Polynomial operators[J].Revue Roumaine de Mathematiques Pures et Appliquees,1968,13:1173-1194. [2]GOLDMAN R.Pólya’s urn model and computer aided geometric design[J].SIAM Journal on Algebraic and Discrete Methods,1985,6(1):1-28. [3]GOLDMAN R.Urn models,approximations,and splines[J].Journal of Approximation Theory,1988,54(1):1-66. [4]SIMEONOV P,ZAFIRIS V,GOLDMAN R.h-Blossoming:anew approach toalgorithms and identities for h-Bernstein bases and h-Bézier curves Computer Aided Geometric Design,2011,28(9):549-565. [5]SUN Y H,HAN L W.The rational h-Béziercurve and its representation of conicsection [J].Journal of Computer-Aided Design &Computer Graphics,2019,31(9):1581-1590. [6]MARCO A,MARTINEA J J,VIAA R.Accurate bidiagonal decomposition of totally positive h-Bernstein-Vandermonde matrices and applications[J].Linear Algebra and its Applications,2019,579:320-335. [7]PHILLIPS G M.A de Casteljau algorithm for generalized Bernstein polynomials[J].Bit Numerical Mathematics,1996,36(1):232-236. [8]ORUÇ H.Generalized Bernstein polynomials and total positivity[D].Scotland:University of St.Andrews,1998. [9]ORUÇ H,PHILLIPS G M.q-Bernstein polynomials and Bézier curves[J].Journal of Computational and Applied Mathematics,2003,151(1):1-12. [10]DISIBUYUK C,ORUÇ H.A generalized of rational Bernstein Bézier curves [J].BIT Numerical Mathematics,2007,47:313-323. [11]SIMEONOV P,ZAFIRIS V,GOLDMAN R.q-Blossoming:A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves [J].Journal of Approximation Theory,2012,164:77-104. [12]NOWAK G.Approximation properties for generalized q-Bernstein polynomials[J].Journal of Mathematical Analysis & Applications,2009,350(1):50-55. [13]SIMEONOV P,GOLDMAN R.Quantum Bernstein bases and quantum Bezier curves[J].Journal of Computational and Applied Mathematics,2015,288:284-303. [14]SIMEONOV P,GOLDMAN R.Two essential properties of(q,h)-Bernsteiein Bezier curves[J].Applied Numerical Mathematics:Transactions of IMACS,2015,96:82-93. [15]BAASS K G.The Use of Clothoid Templates in Highway Design [J].Transportation Forum,1984,1(1):47-52. [16]YANG X X,ZHOU W W,ZHANG Y.A re-planning path correction method for collision avoidance based on PH spiral [J].Flight Dynamics,2016,34(5):86-90. [17]SAPIDIS N S,FREY W H.Controlling the curvature of a quadratic Bézier curve [J].Computer Aided Geometric Design,1992,9(2):85-91. [18]FREY W H,FIELD D A.Designing Bézier conic segments with monotone curature[J].Computer Aided Geometric Design,2000,17(6):457-483. [19]CAI H H,LIU B X,CHENG Y.Transition Curve between Pa-rallel Lines Based on Bézier Curve[J].Journal of Graphics,2015,36(3):363-366. [20]AHMAD A,GOBITHAASAN R U.Rational Quadratic Bézier Spirals [J].Sains Malaysiana,2018,47(9):2205-2211. [21]WANG A Z,ZHAO G,HOU F.Constructing Bézier curves with monotone curvature [J].Journal of Computational and Applied Mathematics,2019,355:1-10. [22]HE C,ZHAO G,WANG A Z,et al.Typical curve with G1 constraints for curve completion[J].Visual Computing for Industry,Biomedicine,and Art,2021,4(1):4-28. [23]LIANG J N,XIE B,HAN L W.Combinatorial quadratic Phillips q-Bézier curves with monotone curvature[J].Journal of Gra-phics,2022,43(3):443-452. [24]HAN L W,CHU Y,QIU Z Y.Generalized Bézier curves and surfaces based on Lupaş q-analogue of Bernstein operator[J].Journal of Computational and Applied Mathematics,2014,261:318-329. |
[1] | LI Hui, LI Wengen, GUAN Jihong. Dually Encoded Semi-supervised Anomaly Detection [J]. Computer Science, 2023, 50(7): 53-59. |
[2] | ZHU Wentao, LIU Wei, LIANG Shangsong, ZHU Huaijie, YIN Jian. Variational Continuous Bayesian Meta-learning Based Algorithm for Recommendation [J]. Computer Science, 2023, 50(7): 66-71. |
[3] | HUO Weile, JING Tao, REN Shuang. Review of 3D Object Detection for Autonomous Driving [J]. Computer Science, 2023, 50(7): 107-118. |
[4] | YAN Mingqiang, YU Pengfei, LI Haiyan, LI Hongsong. Arbitrary Image Style Transfer with Consistent Semantic Style [J]. Computer Science, 2023, 50(7): 129-136. |
[5] | ZHOU Bo, JIANG Peifeng, DUAN Chang, LUO Yuetong. Study on Single Background Object Detection Oriented Improved-RetinaNet Model and Its Application [J]. Computer Science, 2023, 50(7): 137-142. |
[6] | ZHAO Ran, YUAN Jiabin, FAN Lili. Medical Ultrasound Image Super-resolution Reconstruction Based on Video Multi-frame Fusion [J]. Computer Science, 2023, 50(7): 143-151. |
[7] | DAI Xuesong, LI Xiaohong, ZHANG Jingjing, QI Meibin, LIU Yimin. Unsupervised Domain Adaptive Pedestrian Re-identification Based on Counterfactual AttentionLearning [J]. Computer Science, 2023, 50(7): 160-166. |
[8] | HU Jiawei, JIA Zequn, SUN Yantao, LIU Qiang. Survey of Analysis and Solutions for Multi-UAV Cooperative Mission Planning Problem Under Multi-constraint Conditions [J]. Computer Science, 2023, 50(7): 176-193. |
[9] | JIANG Linpu, CHEN Kejia. Self-supervised Dynamic Graph Representation Learning Approach Based on Contrastive Prediction [J]. Computer Science, 2023, 50(7): 207-212. |
[10] | MAO Huihui, ZHAO Xiaole, DU Shengdong, TENG Fei, LI Tianrui. Short-term Subway Passenger Flow Forecasting Based on Graphical Embedding of Temporal Knowledge [J]. Computer Science, 2023, 50(7): 213-220. |
[11] | ZHU Yuying, GUO Yan, WAN Yizhao, TIAN Kai. New Word Detection Based on Branch Entropy-Segmentation Probability Model [J]. Computer Science, 2023, 50(7): 221-228. |
[12] | LI Rongchang, ZHENG Haibin, ZHAO Wenhong, CHEN Jinyin. Data Reconstruction Attack for Vertical Graph Federated Learning [J]. Computer Science, 2023, 50(7): 332-338. |
[13] | YU Kai, SU Tianrui. Modeling and Simulation of Point-to-Point Propagation of False Information Based on Information Risk Perception [J]. Computer Science, 2023, 50(7): 376-385. |
[14] | LUO Haiwen, WU Yangjun, SHANG Honghui. Many-core Optimization Method for the Calculation of Ab initio Polarizability [J]. Computer Science, 2023, 50(6): 1-9. |
[15] | JIN Jiexi, XIE Hehu, DU Peibing, QUAN Zhe, JIANG Hao. QR Decomposition Based on Double-double Precision Gram-Schmidt Orthogonalization Method [J]. Computer Science, 2023, 50(6): 45-51. |
|