Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 220900008-4.doi: 10.11896/jsjkx.220900008
• Big Data & Data Science • Previous Articles Next Articles
WANG Wu1, TAN Bin2, ZHANG Shun3
CLC Number:
[1]XU X Q,YANG J B.Topological Representation of Distributive Hypercontinuous Lattices[J].Chiness Annals of Mathematics,2009,30(B):199-206. [2]AMADIO R M,CURIEN P L.Domains and Lambda-Calculi[M].Cambride:Cambride University Press,1998. [3]YANG J B,LUO M K.Priestley spaces,Quasi-hyperalgebraicLattices and Smyth Powerdomains[J].Acta Mathematics Sinica,2006(22):951-958. [4]ERNE M.The ABC Order and Topology[M].Berlin:Heder-mann Press,1991. [5]WANG W,KOU H.Approximation Structure on T0 Topological Space[J].Journal of Sichuan University(Natural Science Edition),2014,51(4):681-683. [6]YU Y,KOU H.Directed Space Defined through T0 Topological Space with Specialization Order[J].Journal of Sichuan University(Natural Science Edition),2015,52(2):217-222. [7]WANG W.Adjoint characterization of continuous spaces[J].Mathematics in Practice and theory,2020,50(19):276-280. [8]GONG Y L,SHI J M.Countable sobrification [J].Journal of Nanchang University(Natural Science Edition),2018,42(4):322-326. [9]MAO X X,XU L S.Properties and characterizations of super-continuous posets[J].Computer Engineering and Applications,2015,51(1):9-12. [10]WAN T L,YANG J B.Countable k-bounded Sober Spaces[J].Fuzzy Systems and Mathematics,2020,34(5):8-16. [11]CHEN D L,ZHANG Y.Observations on Irreducible Sets andSober Spaces[J].Chinese Quarterly of Mathematics,2014,9(4):501-504. [12]GIERZ G,HOFMANN K M,KEIMAL K,et al.ContinuousLattices and Domains[M].Cambride:Cambride University Press,2003. [13] RUAN X J,XU X Q.Convergence in s2-quasicontinuous posets[J].Springerplus,2016,5(218):1. [14]TANG Y,YANG J B.Some properties of hyper-Sober and k-bounded Sober spaces[J].Applied Mathematics A Journal of Chinese Universities(Ser.A),2020,35(3):367-373. [15]YANG Y,BAO M,XU X Q.Retracts and Smyth power spaces of k bounded sober spaces[J].Pure and Applied Mathematics,2022,38(1):13-24. [16]CHONG S,HADRIAN A,DONG S Z,et al.SI2-topology on T0 spaces[J].Houston Journal of Mathematics,2020,46(2):491-505. [17]LUO S Z,XU X Q.On SI2-continuous Spaces[J].ElectronicNotes in Theoretical Computer Science,2019,345:125-141. [18]LU J.Research on Domain theory in T0Topological space[D].Xi’an:Shaanxi Normal University,2018. |
No related articles found! |
|