Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 221100088-7.doi: 10.11896/jsjkx.221100088
• Artificial Intelligence • Previous Articles Next Articles
MA Mengyu1, SUN Jiaxiang1, HU Chunling2
CLC Number:
[1]FRIDEMAN N,LINIAL M,NACHMAN I,et al.Using Bayesian networks to analyze expression data[J].Journal of Computational Biology,2000,7(3/4):601-620. [2]SACHS K,PEREZ O,PE’ER D,et al.Causal protein-signaling networks derived from multiparameter single-cell data[J].Science,2005,308(5721):523-529. [3]GRZEGORCYK M,HUSMEIER D.A non-homogeneous dy-namic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology[J].Statistical Applications in Genetics and Molecular Biology,2012,11(4). [4]GRZEGORCYK M,HUSMEIER D.Bayesian Regularization of Non-homogeneous Dynamic Bayesian Networks by Globally Coupling Interaction Parameters[C]//Artificial Intelligence and Statistics.PMLR,2012:467-476. [5]LEBRE S,BECQ J,DEVAUX F,et al.Statistical inference of the time-varying structure of gene-regulation networks[J].BMC Systems Biology,2010,4(1):1-16. [6]GRZEGORCYK M,HUSMEIER D.Non-homogeneous dynamic Bayesian networks for continuous data[J].Machine Learning,2011,83(3):355-419. [7]DONDELINGER F,LEBRE S,HUSMEIER D.Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure[J].Machine Learning,2013,90(2):191-230. [8]DONDELINGER F,LEBRE S,HUSMEIER D.Heterogeneous continuous dynamic Bayesian networks with flexible structure and inter-time segment information sharing[C]//International Conference on Machine Learning.DBLP,2010:303-310. [9]GRZEGORCYK M,HUSMEIER D.Improving the structureMCMC sampler for Bayesian networks by introducing a new edge reversal move[J].Machine Learning,2008,71(2):265-305. [10]GRZEGORCYKM.A non-homogeneous dynamic Bayesian network with a hidden Markov model dependency structure among the temporal data points[J].Machine Learning,2016,102(2):155-207. [11]GRZEGORCYKM,HUSMEIER D.Regularization of non-homogeneous dynamic Bayesian networks with global information-coupling based on hierarchical Bayesian models[J].Machine Learning,2013,91(1):105-154. [12]KAMALABAD M S,GRZEGORCYK M.A new Bayesian piecewise linear regression model for dynamic network reconstruction[J].BMC Bioinformatics,2021,22(2):1-24. [13]CANTONE I,MARUCCI L,IORIO F,et al.A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches[J].Cell,2009,137(1):172-181. [14]EDWARDS K D,ANDERSON P E,HALL A,et al.FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock[J].The Plant Cell,2006,18(3):639-650. [15]MOCKLER T C,MICHAEL T P,PRIEST H D,et al.The DIURNAL Project:DIURNAL and Circadian Expression Profiling,Model-based Pattern Matching,and Promoter Analysis[C]//Cold Spring Harbor Symposia on Quantitative Biology.Cold Spring Harbor Laboratory Press,2007,72:353-363. [16]HUNG F Y,CHEN F F,LI C,et al.The arabidopsis LDL1/2-HDA6 histone modification complex is functionally associated with CCA1/LHY in regulation of circadian clock genes[J].Nucleic acids Research,2018,46(20):10669-10681. [17]ALABADI D,OYAMA T,YANOVSKY M J,et al.Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock[J].Science,2001,293(5531):880-883. [18]KIKIS E A,KHANNA R,QUAIL P H.ELF4 is a phyto-chrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY[J].The Plant Journal,2005,44(2):300-313. [19]HERRERO E,KOLMOS E,BUJDOSO N,et al.EARLYFLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock[J].The Plant Cell,2012,24(2):428-443. [20]ALEXANDRE MORAES T,MENGIN V,PEIXOTO B,et al.The circadian clock mutant lhy cca1 elf3 paces starch mobilization to dawn despite severely disrupted circadian clock function[J].Plant Physiology,2022,189(4):2332-2356. [21]KAMALABAD M S,GRZEGORCYK M.Non-homogeneous dynamic Bayesian networks with edge-wise sequentially coupled parameters[J].Bioinformatics,2020,36(4):1198-1207. [22]KAMALABAD M S,GRZEGORCYK M.A new Bayesian piecewise linear regression model for dynamic network reconstruction[J].BMC Bioinformatics,2021,22(2):1-24. |
[1] | YI Ze-long, WEN Yu-mei, LIN Yan-min, CHEN Wei-ting and LV Guan-yu. Impacts of Correlation Effects among Multi-layer Faults on Software Reliability Growth Processes [J]. Computer Science, 2018, 45(2): 241-248. |
[2] | WANG Geng-sheng and ZHANG Min. Research of Improved CPF Algorithm for Intergrated Train Positioning [J]. Computer Science, 2017, 44(9): 296-299. |
[3] | GUO Zong-hao and WEI Ou. Optimal Control of Probabilistic Boolean Networks Using Model Checking [J]. Computer Science, 2017, 44(5): 193-198. |
[4] | . Multi-object Visual Tracking Based on Reversible Jump Markov Chain Monte Carlo [J]. Computer Science, 2012, 39(7): 270-275. |
[5] | . [J]. Computer Science, 2009, 36(6): 214-216. |
[6] | . [J]. Computer Science, 2009, 36(4): 195-199. |
|