Computer Science ›› 2023, Vol. 50 ›› Issue (2): 57-68.doi: 10.11896/jsjkx.221100114
• Edge Intelligent Collaboration Technology and Frontier Applications • Previous Articles Next Articles
Cui ZHANG1, En WANG1, Funing YANG1, Yong jian YANG1 , Nan JIANG2
CLC Number:
[1]YANG S,HAN K,ZHENG Z,et al.Towards personalized task matching in mobile crowdsensing via fine-grained user profiling[C]//IEEE INFOCOM.2018:2411-2419. [2]WANG Z B,PANG X Y,CHEN Y H,et al.Privacy-Preserving Crowd-Sourced Statistical Data Publish-ing with An Untrusted Server[J].IEEE Transactions on Mobile Computing,2019,18(6):1356-1367. [3]DUTTA P,AOKI P M,KUMAR N,et al.Common sense:Participatory urban sensing using a network of hand-held air quality monitors[C]//ACM Conference on Embedded Networked Sensor Systems.2009. [4]GIL D S,D'OREY P M,AGUIAR A.On the challenges of mobile crowdsensing for traffic estimation[C]//ACM Conference on Embedded Networked Sensor Systems.2017. [5]QIN Z,FANG Z,LIU Y,et al.A Measurement Framework for Explicit and Implicit Urban Traffic Sensing[J].ACM Transactions on Sensor Networks,2021,17(4):1-27. [6]LIU C H,PIAO C,TANG J.Energy-efficient UAV crowdsen-sing with multiple charging stations by deep learning[C]//IEEE INFOCOM.2020:199-208. [7]BARKA E,KERRACHE C A,LAGRAA N,et al.Behavior-aware UAV-assisted crowd sensing technique for urban vehicular environments[C]//IEEE Annual Consumer Communications Networking Conference (CCNC).2018:1-7. [8]TAO C,ZHU K,CHEN B,et al.UAV-assisted ground signalmap construction based on 3-d spatial correlation[C]//IEEE Global Communications Conference.2020:1-5. [9]ZHANG S,WU J,LU S.Collaborative mobile charging[J].IEEE Transactions on Computers,2015,64(3):654-667. [10]LOWE R,WU Y,TAMAR A,et al.Multi-agent actor-critic for mixed cooperative-competitive environments[C]//NIPS.2017:6379-6390. [11]LIU C H,DAI Z,ZHAO Y,et al.Distributed and Energy-efficient mobile crowdsensing with charging stations by deep reinforcement learning[J].IEEE Transactions on Mobile Computing,2021,21(1):130-146. [12]LIU C H,CHEN Z,ZHAN Y.Energy-efficient distributed mobile crowd sensing:A deep learning approach[J].IEEE Journal on Selected Areas in Communications,2019,37(6):1262-1276. [13]YANG Y,RUI L,LI M Z.MING,et al.Mean field multi-agent reinforcement learning[C]//The 35th International Conference on Machine Learning.2018:5571-5580. [14]WANG Z B,HU J H,LV R Z,et al.Personalized Privacy-Preserving Task Allocation for Mobile Crowdsensing[J].IEEE Transactions on Mobile Computing,2018,18(6):1330-1341. [15]WANG L,ZHIWEN Y U,GUO B,et al.Mobile crowd sensing task optimal allocation:a mobility pattern matching perspective[M]//Frontiers of Computer Science (print),2018:231-244. [16]ZHANG B,LIU C H,TANG J,et al.Learning-based energy-efficient data collection by unmanned vehicles in smart cities[J].IEEE Transactions on Industrial Informatics,2018,14(4):1666-1676. [17]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Playing Atari with deep reinforcement learning[R].Computer Science,2013. [18]MNIH V,BADIA A P,MIRZA M,et al.Asynchronous methods for deep reinforcement learning[C]//Proceedings of The 33rd International Conference on Machine Learning.2016:1928-1937. [19]LILLICRAP T,HUNT J J,PRITZEL A,et al.Continuous control with deep reinforcement learning[C]//CoRR.2016. [20]SONG M K,WANG Z B,ZHANG Z F,et al.Analyzing User-Level Privacy Attack Against Federated Learning[J].IEEE Journal on Selected Areas in Communications,2020,38(10):2430-2444. [21]WEI Y,ZHENG R.Multi-robot path planning for mobile sensing through deep reinforcement learning[C]//IEEE INFOCOM.2021. [22]DING R,YANG Z,WEI Y,et al.Multi-agent reinforcementlearning for urban crowd sensing with for-hire vehicles[C]//IEEE INFOCOM.2021. [23]JAIN R.A quantitative measure of fairness and discrimination for resource allocation in shared computer systems[R].DEC Research Report,1984. [24]VANSTEENWEGEN P,SOUFFRIAU W,OUDHEUSDEN D V.The orienteering problem:A survey[J].European Journal of Operational Research,2011,209(1):1-10. |
[1] | YANG Xin, LI Hui, QUE Jianming, MA Zhentai, LI Gengxin, YAO Yao, WANG Bin, JIANG Fuli. Efficiently Secure Architecture for Future Network [J]. Computer Science, 2023, 50(3): 360-370. |
[2] | Yifei ZOU, Senmao QI, Cong'an XU, Dongxiao YU. Distributed Weighted Data Aggregation Algorithm in End-to-Edge Communication Networks Based on Multi-armed Bandit [J]. Computer Science, 2023, 50(2): 13-22. |
[3] | CHEN Yipeng, YANG Zhe, GU Fei, ZHAO Lei. Resource Allocation Strategy Based on Game Theory in Mobile Edge Computing [J]. Computer Science, 2023, 50(2): 32-41. |
[4] | CHANG Sha, WU Yahui, DENG Su, MA Wubin, ZHOU Haohao. Online Task Allocation Strategy Based on Lyapunov Optimization in Mobile Crowdsensing [J]. Computer Science, 2023, 50(2): 50-56. |
[5] | ZHENG Hongqiang, ZHANG Jianshan, CHEN Xing. Deployment Optimization and Computing Offloading of Space-Air-Ground Integrated Mobile Edge Computing System [J]. Computer Science, 2023, 50(2): 69-79. |
[6] | SHANG Yuye, YUAN Jiabin. Task Offloading Method Based on Cloud-Edge-End Cooperation in Deep Space Environment [J]. Computer Science, 2023, 50(2): 80-88. |
[7] | YANG Xin, LI Gengxin, LI Hui. EHFM:An Efficient Hierarchical Filtering Method for Multi-source Network Malicious Alerts [J]. Computer Science, 2023, 50(2): 324-332. |
[8] | DAI Liang, WU Yibo, WANG Guiping. Review and Prospect of Connectivity Research on Cellular-V2X [J]. Computer Science, 2023, 50(1): 285-293. |
[9] | CHENG Wen-hui, ZHANG Qian-yuan, CHENG Liang-hua, XIANG Chao-can, YANG Zhen-dong, SHEN Xin, ZHANG Nai-fan. Review of Mobile Air-Ground Crowdsensing [J]. Computer Science, 2022, 49(11): 242-249. |
[10] | YU Hao-wen, LIU Bo, ZHOU Na-qin, LIN Wei-wei, LIU Peng. Survey of Multi-cloud Workflow Scheduling [J]. Computer Science, 2022, 49(11): 250-258. |
[11] | LI Xiao-bo, CHEN Peng, SHUAI Bin, XIA Yun-ni, LI Jian-qi. Novel Predictive Approach to Trajectory-aware Online Edge Service Allocation in Edge Environment [J]. Computer Science, 2022, 49(11): 277-283. |
[12] | BIAN Qing-rong, CHENG Bao-lei, FAN Jian-xi, PAN Zhi-yong. Construction Algorithm of Completely Independent Spanning Tree in Dragonfly Network [J]. Computer Science, 2022, 49(11): 284-292. |
[13] | LIU Pei-wen, SHU Hui, LYU Xiao-shao, ZHAO Yun-tian. Automatic Analysis Technology of Kernel Vulnerability Attack Based on Finite State Machine [J]. Computer Science, 2022, 49(11): 326-334. |
[14] | HE Yuan, XING Chang-you, ZHANG Guo-min, SONG Li-hua, YU Hang. Differential Privacy Based Fingerprinting Obfuscation Mechanism Towards NetworkReconnaissance Deception [J]. Computer Science, 2022, 49(11): 351-359. |
[15] | PAN Yu, WANG Shuai-hui, ZHANG Lei, HU Gu-yu, ZOU Jun-hua, WANG Tian-feng, PAN Zhi-song. Survey of Community Detection in Complex Network [J]. Computer Science, 2022, 49(11A): 210800144-11. |
|