Computer Science ›› 2023, Vol. 50 ›› Issue (5): 3-11.doi: 10.11896/jsjkx.221100159
• Explainable AI • Previous Articles Next Articles
XING Ying
CLC Number:
[1]VAN T,FISHER W,MANCUSO M.An explainable artificialintelligence system for small-unit tactical behavior[C]//Proceedings 16th Conference Innovative Application Artificial Intelligence.2004:900-907. [2]GUNNING D,AHA D.DARPA's explainable artificial intelligence(XAI) program[J].AI Magazine,2019,40(2):44-58. [3]ALAMEDA P X,REEDI M,CELIS E,et al.FAT/MM'19:1st International Workshop on Fairness,Accountability,and Transparency in Multi-Media[C]//The 27th ACM International Conference.2019:2728-2729. [4]GUY T V.NIPS Workshop on Imperfect Decision Makers2016:Preface[C]//Neural Information Processing Systems.2016:1-3. [5]YEUNG C,HO D,PHAM B,et al.Enhancing Adjoint Optimization-based Photonics Inverse Design with Explainable Machine Learning[J].ACS Photonics,2022,9(5):1577-1585. [6]AUGELLO A,INFANTINO I,LIETO A,et al.Towards ADual Process Approach to Computational Explanation in Human-Robot Social Interaction[C]//International Joint Conference on Artificial Intelligence.2017:1-6. [7]IERACITANO C,MAMMONE N,HUSSAIN A,et al.Anovel explainable machine learning approach for EEG-based brain-computer interface systems[J].Neural Computing and Applications,2021(3):1-14. [8]ESCALANTE H J,GUYON I,ESCALERA S,et al.Design of an explainable machine learning challenge for video interviews[C]//2017 International Joint Conference on Neural Networks(IJCNN).Anchorage,AK,USA,2017:3688-3695. [9]CHANDER A.Explainable AI:The New 42?[C]//Proceedings MAKE-Explainable AI.2017:295-303. [10]WU Y N.Discuss the application of AI in software engineering[J].Network Security Technology & Application,2021(8):52-54. [11]LU Y.Application of Software Engineering Methods in Compu-ter Software Development[J].Software,2022,43(8):176-178. [12]LIU X.Application of AI in software engineering[J].Computer &Network,2021,47(3):48. [13]MEIR K,MARK L.Artificial Intelligence Methods for Software Engineering[M].World Scientific Publishing Company.2021:6-15. [14]ADADI A,BERRADA M.Peeking Inside the Black-Box:A Survey on Explainable Artificial Intelligence(XAI)[J].IEEE Access,2018,6:52138-52160. [15]BARREDO A,DIAZ-RODRIGUEZ N,DEL SER J,et al.Explainable Artificial Intelligence(XAI):Concepts,Taxonomies,Opportunities and Challenges Toward Responsible AI[J].Information Fusion,2020,58:82-115. [16]HOFFMAN R,MUELLER S,KLEIN G,et al.Metrics for Explainable AI:Challenges and Prospects[J/OL].XAI Metrics,2018:1-50.(2018-12-11)[2023-03-06].https://arxiv.org/abs/1812.04608. [17]NUNES I,JANNACH D.A Systematic Review and Taxonomy of Explanations in Decision Support and Recommender Systems[J].User Modeling and User-Adapted Interaction,2017,27(3):393-444. [18]MARKUS A,KORS J,RIJNBEEK P.The Role of Explain ability in Creating Trustworthy Artificial Intelligence for Health Care:a Comprehensive Survey of the Terminology,Design Choices,and Evaluation Strategies[J].Journal of Biomedical Informatics,2021,113:1-11. [19]DOSHI-VELEZ F,KIM B.Towards a Rigorous Science of Interpretable Machine Learning[J/OL].(2017-02-28)[2023-01-30].https://arxiv.org/abs/1702.08608. [20]VILONE G,LONGO L.Notions of Explainability and Evaluation Approaches for Explainable Artificial Intelligence[J].Information Fusion,2021,76:89-106. [21]TURING A.Computing machinery and intelligence[J].Mind,1950,59(236):433-460. [22]SORET B,JOSHI P,JAGTAP V.Use of artificial intelligence in software development life cycle e a state of the art review[J].Advanced Compute Engineering Communication Technology,2015,4:2278-5140. [23]MARCOS E.Software engineering research versus software development[J].ACM SIGSOFT Software Engineering Notes,2005,30(4):1-7. [24]RECH J,ALTHOFF K.Artificial intelligence and software engineering:status and future trends[J].Kunstliche Intelligenz,2004,18:5-11. [25]PRERSSMAN R,MAXIM B.Software Engineering:A Practitioner's Approach[M].McGraw-Hill,Incorporated,2014. [26]TANGSRIPAIROJ S,SAMADZADEH M.A Taxonomy of DataMining Applications Supporting Software Reuse[J].Intelligent Systems Design and Applications.Advances in Soft Computing,2003,23:303-312. [27]FELDT R,NETO F,TORKAR R.Ways of applying artificial intelligence in software engineering[C]//Proceedings of the 6th International Workshop on Realizing Artificial Intelligence Sy-nergies in Software Engineering(RAISE '18).2018:35-41. [28]CARLETAN A,HARPER E,MENZIES T,et al.The AIEffect:Working at the Intersection of AI and SE[J].IEEE Software,2020,37(4):26-35. [29]ZHU J H,ZHENG W,YANG F Y,et al.Software quality prediction based on ant colony optimization back-propagation neural network[J/OL].(2023-01-12)[2023-03-06].http://kns.cnki.net/kcms/detail/51.1307.tp.20230111.1318.004.html. [30]ZHAO H J.Analysis of Software Testing Method of Dynamic Weighted Combined Neural Network Model[J].Electronic Technology,2022,51(4):70-72. [31]LI Z,CUI Z Q,CHEN X,et al.Deep-SBFL:defect locationmethod of deep neural network based on spectrum[J/OL].(2022-11-15)[2023-03-06].http://www.jos.org.cn/jos/article/abstract/6403. [32]XU H R,WANG Y J,HAUNG Z J,et al.Compiler FuzzingTest Case Generation with Feed-forward NeuralNetwork[J].Journal of Software,2022,33(6):1996-2011. [33]MOHAMMADIAN M.Innovative Applications of Artificial Intelligence Techniques in Software Engineering[C]//Artificial Intelligence Applications and Innovations.AIAI 2010.IFIP Advances in Information and Communication Technology,2010. [34]RAZA E.Artificial intelligence techniques in software enginee-ring(AITSE)[C]//International Multi-Conference of Engineers and Computer Scientists.2009:18-20. [35]ADLEMAN L.An abstract theory of computer viruses(invited talk)[C]//CRYPTO '88:Proceedings on Advances in cryptology.1990:354-374. [36]FILIOL E.Computer Viruses:from Theory to Applications[M].Berlin;Springer Science & Business Media,2006. [37]MCGRAW G,MORRISETT G.Attacking malicious code:report to theinfosec research council[J].IEEE Software,2000,17(5):33-41. [38]FILIOL E.Malware pattern scanning schemes secure againstblack-box analysis[J].Computer Virology,2006,2(1):35-50. [39]FILIOL E,JACOB G,LIARD M.Evaluation methodology and theoretical model for antiviral behavioural detection strategies[J].Computer Virology,2007,3(1):27-37. [40]YE Y,LI T,CHEN Y,et al.Automatic malware categorization using cluster ensemble[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2010:95-104. [41]CHRISTODORESCU M,JHA S,KRUEGEL C.Mining specificationsof malicious behavior[C]//Proceedings of ESEC/FSE07.2007:5-14. [42]KOLTER J,MALOOF M.Learning to detect malicious executable in the wild[C]//Proceedings of KDD.2004:470-478. [43]SCHULTZ M,ESKIN E,ZADOK E.Data mining methods fordetection of new malicious executables.In:Security and privacy[C]//Proceedings of 2001 IEEE Symposium.2001:38-49. [44]SUNG A,XU J,CHAVEZ P,et al.Static analyzer of vicious executables(save)[C]//Proceedings of the 20th Annual Computer Security Applications Conference.2004:326-334. [45]WANG J,DENG P,FAN Y,et al.Virus detection using data mining techniques[C]//Proceedings of IEEE International Conference on Data Mining.2003:71-76. [46]REDDY D,PUJARI A.N-gram analysis for computer virus detec-tion[J].Computer Virology,2006,2:231-239. [47]YE Y,CHEN L,WANG D,et al.SBMDS:an interpretablestring based malware detection system using SVM ensemble with bagging[J].Journal in Computer Virology,2009,5(4):283. [48]DIETTERICH T.Machine learning research:Four current directions[J].AI Magazine,1997,18(4):97-136. [49]BREIMA L.Bagging predicators[J].Machine Learning,1996,24:123-140. [50]DANG X,GONG D,YAO X,et al.Enhancement of Mutation Testing via Fuzzy Clustering andMulti-population Genetic Algorithm[J].IEEE Transactions on Software Engineering,2021,48(6):2141-2156. [51]WANG S Y,SUN Y Q,SUN J Z.Detection of Bad Smell in Code Based on BP Neural Network[J].Computer Engineering,2020,46(10):216-222,230. [52]JIANG Y,WANG S,WU K Q,et al.Software defect prediction model based on quantum immune clonal BP algorithm[J].Journal of Southwest Minzu University(Natural Science Edition),2022,48(5):537-542. [53]LI E H.Research on Accurate Prediction of Android Software defects based on Hybrid Neural Network[J].Automation & Instrumentation,2022,8:33-36,41. [54]CUI M T,LONG S L,JIANG Y,et al.Research of Software Defect Prediction Model Based on Complex Network and Graph Neural Network[J].Entropy,2022,24(10):1373. [55]BASILI V,PERRICONE B.Software errors and complexity:an empirical investigation[C]//Communications of the ACM.1984:42-52. [56]MUNSON J,KHOSHGOFTAAR Y.The detection of fault-prone programs[J].IEEE Transactions on Software Enginee-ring,1992,18(5):423. [57]SELBY R,PORTER A.Learning from examples:generation and evaluation of decision trees for software resource analysis[J].IEEE Transactions on Software Engineering,1988,14(12):1743-1757. [58]BRIAND L,BAILI V,THOMAS W.A pattern recognition approach for software engineering data analysis[J].IEEE Tran-sactions on Software Engineering,1992,18(11):931-942. [59]BRIAND L.Developing interpretable models with optimized set reduction for identifying high-risk software components[J].IEEE Transactions on Software Engineering,1993,19(11):1028-1044. [60]NORBERT S,ALEXANDER G,CHRISTIAN K.Performance-influence models for highly configurable systems[C]//Procee-dings of the 2015 10th Joint Meeting on Foundations of Software Engineering.2015:284-294. [61]KASHI V V,NACHIAPPAN N.Characterizing cloud compu-ting hardware reliability[C]//Proceedings of the 1st ACM symposium on Cloud computing.2010:193-204. [62]XU T L,JIN L,FAN X P,et al.Hey,you have given me too many knobs!understanding and dealing with over-designed configuration in system software[C]//Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.2015:307-319. [63]XU T Y,JIN X X,HUANG P,et al.Early detection of configuration errors to reduce failure damage[C]//12th USENIX Symposium on Operating Systems Design and Implementation(OSDI 16).2016. [64]ADAM B,GEORGE P,ANA K,et al.IX:A Protected Data-plane Operating System for High Throughput and Low Latency[C]//11th USENIX Symposium on Operating Systems Design and Implementation(OSDI 14).2014:49-65. [65]DANA V,ANDREW P,GEOFFREY J,et al.Automatic database management system tuning through large-scale machine learning[C]//Proceedings of the 2017 ACM International Conference on Management of Data.2017:1009-1024. [66]YI D,NIKITA M,HENRY H.Generative and multi-phaselearning for computer systems optimization[C]//Proceedings of the 46th International Symposium on Computer Architecture.2019:39-52. [67]MILTIADIS A,EERL T,PREMKUMAR D,et al.A survey of machine learning for big code and naturalness[J].ACM Computing Surveys.2018,51(4):1-37. [68]WAN Z Y,XIA X, LO D,et al.How does machine learning change software development practices?[J].IEEE Transactions on Software Engineering,2019,47(9):1857-1871. [69]ENGIN Ï,SALLY A,RICH C,et al.Efficiently exploring architectural design spaces via predictive modeling[J].ACM SIGOPS Operating Systems Review,2006,40(5):195-206. [70]NARDI L,SOUZA A,KOEPLINGER D,et al.HyperMapper:a Practical Design Space Exploration Framework[C]//2019 IEEE 27th International Symposium on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems(MAS-COTS).2019:425-426. [71]YI D,RISI K,JONATHAN E.Multi-resolution Kernel Appro-ximation for Gaussian Process Regression[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS'17).Long Beach,California,USA,2017:1-9. [72]ATEFEH M,ANINDA M,BENJAMIN C,et al.Bayesian Optimization for Efficient Accelerator Synthesis[J].ACM Transactions on Architecture and Code Optimization(TACO),2020,18(1):1-25. [73]FINALE D B,EEN K.Towards a rigorous science of interpretable machine learning[J].arXiv:1702.08608,2017. [74]YIN Z N,DING Y,ZHOU Y Y,et al.How do fixes becomebugs?[C]//Proceedings of the 19th ACM SIGSOFT Sympo-sium and the 13th European Conference on Foundations of Software Engineering.2011:26-36. [75]JIANMEI G,KRZYSZTOF C,SVEN A,et al.Variability-aware performance prediction:A statistical learning approach[C]//2013 28th IEEE/ACM International Conference on Automated Software Engineering(ASE).2013:301-311. [76]CHRISTIAN K,ALEXANDER G,NORBERT S,et al.The interplay of sampling and machine learning for software perfor-mance prediction[J].IEEE Software,2020,37(4):58-66. [77]FLAVIO M,CHRISTIAN K,MARCIO R,et al.A Comparison of 10 Sampling Algorithms for Configurable Systems[C]//Proceedings of the 38th International Conference on Software Engineering(Austin,Texas).2016:643-654. [78]MOLNAR C.Interpretable machine learning[M].Lulu.com,2020. [79]CHI L,SHU W,HENRY H.Statically inferring performanceproperties of software configurations[C]//Fifteenth EuroSys Conference(EuroSys'20).2020:1-16. [80]VAN C K,JALEEL A,EECKHOUT L,et al.Scheduling hete-rogeneous multi-cores through performance impact estimation(PIE)[J].ACM SIGARCH Computer Architecture News,2012,40(3):216-224. [81]SHU W,CHI L,HENRY H,et al.Understanding and auto-adjusting performance-sensitive configurations[J].ACM SIGPLAN Notices,2018,53(2):154-168. [82]DING Y,PERVAIZ A,CARBIN M,et al.Generalizable and interpretable learning for configuration extrapolation[C]//Proceedings of the 29th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering.2021:728-740. [83]REISS S.Semantics-based code search[C]//Proceedings of the International Conference on Software Engineering.2009:243-253. [84]XIA B,PANG J M,ZHOU X,et al.Research progress on binary code similarity search[J].Journal of Computer Applications,2022,42(4):985-998. [85]SHIN E,SONG D,MOAZZEZI R.Recognizing functions in binaries with neural networks[C]//Proceedings of the USENIX Security Symposium.2015:611-626. [86]BAO T,BURKET J,WOO M,et al.ByteWeight:Learning torecognize functions in binary code[C]//Proceedings of the USENIX Security Symposium.2014:845-860. [87]LUO L,MING J,WU D,et al.Semantics-based obfuscation-resilient binary code similarity comparison with applications to software plagiarism detection[C]//Proceedings of the International Symposium on Foundations of Software Engineering.2014:389-400. [88]ZHANG F,WU D,LIU P,et al.Program logic based software plagiarism detection[C]//Proceedings of the IEEE International Symposium on Software Reliability Engineering.2014:66-77. [89]MENG X,MILLER B,JUN K.Identifying multiple authors in a binary program[C]//Proceedings of the European Symposium on Research in Computer Security.2017:286-304. [90]PEWNY J,SCHUSTER F,BERNHARD L,et al.Leveraging semantic signatures for bug search in binary programs[C]//Proceedings of the Annual Computer Security Applications Conference.2014:406-415. [91]ESCHWEILER S,YAKDAN K,GERHARDS-PADILLA E.discovRE:Efficient cross-architecture identification of bugs in binary code[C]//Proceedings of the Network and Distributed System Security Symposium.2016:58-79. [92]XU X,LIU C,FENG Q,et al.Neural network-based graph embedding for cross-platform binary code similarity detection[C]//Proceedings of the ACM Conference on Computer and Communications Security.2017:363-376. [93]GAO J,YANG X,FU Y,et al.VulSeeker:A semantic learning based vulnerability seeker for cross-platform binary[C]//Proceedings of the ACM/IEEE International Conference on Automated Software Engineering.2018:896-899. [94]DAVID Y,PARTUSH N,YAHAV E.FirmUp:Precise static detection of common vulnerabilities in firmware[C]//Procee-dings of the International Conference on Architectural Support for Programming Languages and Operating Systems.2018:392-404. [95]CHANDRAMOHAN M,XUE Y,XU Z,et al.Bin-Go:Cross-architecture cross-os binary search[C]//Proceedings of the International Symposium on Foundations of Software Engineering.2016:678-689. [96]FENG Q,WANG M,ZHANG M,et al.Extracting conditional formulas for cross-platform bug search[C]//Proceedings of the ACM Symposium on Information,Computer and Communications Security.2017:346-359. [97]SHIRANI P,COLLARD L,AGBA B.Binarm:Scalable and efficient detection of vulnerabilities in firmware images of intelligent electronic devices[C]//International Conference on Detection of Intrusions and Malware,and Vulnerability Assessment.Springer,2018:114-138. [98]XUE Y,XU Z,CHANDRAMOHA M,et al.Accurate and scalable cross-architecture cross-os binary code search with emulation[J].IEEE Transactions on Software Engineering,2018,45(11):1125-1149. [99]LIU B,HUO W,ZHANG C,et al.αdiff:Cross-version binarycode similarity detection with DNN[C]//Proceedings of the ACM/IEEE International Conference on Automated Software Engineering.2018:667-678. [100]DING S,FUNG B,CHARLANG P.Asm2Vec:Boosting static representation robustness for binary clone search against code obfuscation and compiler optimization[C]//Proceedings of the IEEE Symposium on Security and Privacy.IEEE,2019:472-489. [101]MASSARELLI L,LUNA G,PETRONI F,et al.SAFE:Self-attentive function embeddings for binary similarity[C]//International Conference on Detection of Intrusions and Malware,and Vulnerability Assessment.Springer,2019:309-329. [102]PEWNY J,GARMANY B,GAWLIK R,et al.Cross architecture bug search in binary executables[C]//Proceedings of the IEEE Symposium on Security and Privacy.IEEE,2015:709-724. [103]FENG Q,ZHOU R,XU C,et al.Scalable graph-based bugsearch for firmware images[C]//Proceedings of the ACM Conference on Computer and Communications Security.2016:480-491. [104]ZUO F,LI X,ZHANG Z,et al.Neural machine translation inspired binary code similarity comparison beyond function pairs[C]//Proceedings of the Network and Distributed System Security Symposium.2019:1-15. [105]MARASTONI N,GIACOBAZZI R,DALLA PREDA M.A deep learning approach to program similarity[C]//Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis.ACM,2018:26-35. [106]REDMOND K,LUO L,ZENG Q.A cross-architecture instruction embedding model for natural language processing-inspired binary code analysis[J/OL].(2018-12-23)[2023-01-30].https://arxiv.org/abs/1812.09652. [107]KIM D,KIM E,CHA S K,et al.Revisiting Binary Code Simila-rity Analysis using Interpretable Feature Engineering and Lessons Learned[J].arXiv:2011.10749,2022. [108]JIAN G,XIN Y,YING F,et al.VulSeeker-pro:enhanced semantic learning based binary vulnerability seeker with emulation[C]//The 2018 26th ACM Joint Meeting.2018:803-808. |
[1] | GUO Ya-lin, LI Xiao-chen, REN Zhi-lei, JIANG He. Study on Effectiveness of Quality Objectives and Non-quality Objectives for Automated Software Refactoring [J]. Computer Science, 2022, 49(11): 55-64. |
[2] | CHAO Le-men, YIN Xian-long. AI Governance and System:Current Situation and Trend [J]. Computer Science, 2021, 48(9): 1-8. |
[3] | CHEN Jin-yin, ZOU Jian-fei, YUAN Jun-kun, YE Lin-hui. Black-box Adversarial Attack Method Towards Malware Detection [J]. Computer Science, 2021, 48(5): 60-67. |
[4] | ZHU Ping. Complex Algorithm Design and Maintenance Based on Thinking Map [J]. Computer Science, 2021, 48(11A): 682-687. |
[5] | ZHAO Song-hui, REN Zhi-lei, JIANG He. Multi-objective Optimization Methods for Software Upgradeability Problem [J]. Computer Science, 2020, 47(6): 16-23. |
[6] | XIE Nian-nian, ZENG Fan-ping, ZHOU Ming-song, QIN Xiao-xia, LV Cheng-cheng, CHEN Zhao. Android Malware Detection with Multi-dimensional Sensitive Features [J]. Computer Science, 2019, 46(2): 95-101. |
[7] | ZHANG Zong-mei, GUI Sheng-lin, REN Fei. Android Malware Detection Based on N-gram [J]. Computer Science, 2019, 46(2): 145-151. |
[8] | ZHANG Lan, LAI Yao, YE Xiao-jun. Attention Mechanism Based Detection of Malware Call Sequences [J]. Computer Science, 2019, 46(12): 132-137. |
[9] | RONG Feng-ping, FANG Yong, ZUO Zheng and LIU Liang. MACSPMD:Malicious API Call Sequential Pattern Mining Based Malware Detection [J]. Computer Science, 2018, 45(5): 131-138. |
[10] | LI Ni-ge, MA Yuan-yuan, CHEN Mu, CHEN Lu and XU Min. MacDroid:A Lightweight Kernel-level Mandatory Access Control Framework for Android [J]. Computer Science, 2017, 44(Z11): 353-356. |
[11] | YE Yi-lin, WU Li-fa and YAN Hui-ying. Two-layer Semantics-based Security Detection Approach for Android Native Libraries [J]. Computer Science, 2017, 44(6): 161-167. |
[12] | SHAO Shu-di, YU Hui-qun and FAN Gui-sheng. Detecting Malware by Combining API and Permission Features [J]. Computer Science, 2017, 44(4): 135-139. |
[13] | HUANG Hai-xin, ZHANG Lu and DENG Li. Review of Malware Detection Based on Data Mining [J]. Computer Science, 2016, 43(7): 13-18. |
[14] | CHEN Liang, CHEN Xing-yuan, SUN Yi and DU Xue-hui. Detection of Malicious PDF Based on Structural Path [J]. Computer Science, 2015, 42(2): 90-94. |
[15] | ZHANG Wei-xiang and LIU Wen-hong. Test Suite Generation Based on Interaction Testing and Fault Tree Analysis [J]. Computer Science, 2014, 41(Z11): 375-378. |
|