Computer Science ›› 2024, Vol. 51 ›› Issue (3): 368-377.doi: 10.11896/jsjkx.230100013
• Information Security • Previous Articles
YOU Feifu, CAI Jianping, SUN Lan
CLC Number:
[1]NING J Z.Major figures on 2020 population census of China[J].China Statistics,2021(5):4-5. [2]HU Y,LI R.Method discussion on 2020 population census of China--based on the small census in 2015[J].The World of Survey and Research,2017(7):51-54. [3]DINUR I,NISSIM K.Revealing information while preserving privacy[C]//Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.New York:Association for Computing Machinery,2003:202-210. [4]CHEN W Q.Reform and development of the Chinese population census[J].The World of Survey and Research,2012(11):48-52. [5]HAY M,RASTOGI V,MIKLAU G,et al.Boosting the accuracy of differentially private histograms through consistency[J].Proceedings of the VLDB Endowment,2010,3(1/2):1021-1032. [6]WANG N,XIAO X,YANG Y,et al.PrivTrie:Effective Fre-quent Term Discovery under Local Differential Privacy[C]//2018 IEEE 34th International Conference on Data Engineering(ICDE).Paris:IEEE,2018:821-832. [7]CAI J P,LIU X M,LI J Y,et al.Generation Matrix:An Embeddable Matrix Representation for Hierarchical Trees[J].arXiv:2201.11297,2022. [8]ABOWD J M.The US Census Bureau adopts differential privacy[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:Association for Computing Machinery,2018:2867-2867. [9]FIORETTO F,VAN HENTENRYCK P,ZHU K.Differential privacy of hierarchical census data:An optimization approach[J].Artificial Intelligence,2021,296:103475. [10]ABOWD J,ASHMEAD R,SIMSON G,et al.Census topdown:Differentially private data,incremental schemas,and consistency with public knowledge[R/OL].Washington:US Census Bureau,2019.https://github.com/uscensusbureau/census2020-das-e2e/blob/master/doc/20190711_0945_Consistency_for_Large_Scale_Differentially_Private_Histograms.pdf. [11]KUO Y H,CUIU C C,KIFER D,et al.Differentially private hierarchical count-of-counts histograms[J].Proceedings of the VLDB Endowment,2018,11(11):1509-1521. [12]CAI J P,LIU X M,XIONG J B,et al.Approximation method of multiple consistency constraint under differential privacy [J].Journal on Communications,2021,42(6):107-117. [13]QARDAJI W,YANG W,LI N.Understanding hierarchicalmethods for differentially private histograms[J].Proceedings of the VLDB Endowment,2013,6(14):1954-1965. [14]DING B,WINSLETT M,HAN J,et al.Differentially private data cubes:optimizing noise sources and consistency[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data.New York:Association for Computing Machinery,2011:217-228. [15]LI C,HAY M,MIKLAU G,et al.A Data-and Workload-Aware Algorithm for Range Queries Under Differential Privacy[J].Proceedings of the VLDB Endowment,2014,7(5):341-352. [16]CORMODE G,PROCOPIUC C,SRIVASTAVA D,et al.Diffe-rentially private spatial decompositions[C]//2012 IEEE 28th International Conference on Data Engineering.Arlington:IEEE,2012:20-31. [17]ZHANG J,XIAO X,XIE X.Privtree:A differentially private algorithm for hierarchical decompositions[C]//Proceedings of the 2016 International Conference on Management of Data.New York:Association for Computing Machinery,2016:155-170. [18]SHAHAM S,GHINITA G,AHUJA R,et al.HTF:Homogeneous Tree Framework for Differentially-Private Release of Location Data[C]//Proceedings of the 29th International Conference on Advances in Geographic Information Systems.New York:Association for Computing Machinery,2021:184-194. [19]LI S,GENG Y,LI Y.A Differentially private hybrid decomposition algorithm based on quad-tree[J].Computers & Security,2021,109:102384. [20]LI C,MIKLAU G,HAY M,et al.The matrix mechanism:optimizing linear counting queries under differential privacy[J].The VLDB Journal,2015,24:757-781. [21]MCKENNA R,MIKLAU G,HAY M,et al.HDMM:Optimi-zing error of high-dimensional statistical queries under differential privacy[J].arXiv:2106.12118,2021. [22]CARDOSO A R,ROGERS R.Differentially private histograms under continual observation:Streaming selection into the unknown[C]//International Conference on Artificial Intelligence and Statistics.New York:PMLR,2022:2397-2419. [23]ZHU H,YIN F,PENG S,et al.Differentially private hierarchical tree with high efficiency[J].Computers & Security,2022,118:102727. [24]LEE J,WANG Y,KIFER D.Maximum likelihood postproces-sing for differential privacy under consistency constraints[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:Association for Computing Machinery,2015:635-644. [25]DWORK C.Differential privacy[C]//Automata,Languages and Programming:33rd International Colloquium.Berlin:Springer,2006:1-12. [26]DWORK C,MCSHERRY F,NISSIM K,et al.Calibrating noise to sensitivity in private data analysis[C]//Theory of Cryptography:Third Theory of Cryptography Conference.Berlin:Sprin-ger,2006:265-284. [27]DWORK C,ROTH A.The algorithmic foundations of differential privacy[J].Foundations and Trends® in Theoretical Computer Science,2014,9(3/4):211-407. |
[1] | GE Yinchi, ZHANG Hui, SUN Haohang. Differential Privacy Data Synthesis Method Based on Latent Diffusion Model [J]. Computer Science, 2024, 51(3): 30-38. |
[2] | WANG Dong, LI Zheng, XIAO Bingbing. Blockchain Coin Mixing Scheme Based on Homomorphic Encryption [J]. Computer Science, 2024, 51(3): 335-339. |
[3] | CAI Mengnan, SHEN Guohua, HUANG Zhiqiu, YANG Yang. High-dimensional Data Publication Under Local Differential Privacy [J]. Computer Science, 2024, 51(2): 322-332. |
[4] | WANG Zhousheng, YANG Geng, DAI Hua. Lightweight Differential Privacy Federated Learning Based on Gradient Dropout [J]. Computer Science, 2024, 51(1): 345-354. |
[5] | ZHONG Yue, GU Jieming, CAO Honglin. Survey of Lightweight Block Cipher [J]. Computer Science, 2023, 50(9): 3-15. |
[6] | LU Xingyuan, CHEN Jingwei, FENG Yong, WU Wenyuan. Privacy-preserving Data Classification Protocol Based on Homomorphic Encryption [J]. Computer Science, 2023, 50(8): 321-332. |
[7] | LI Kejia, HU Xuexian, CHEN Yue, YANG Hongjian, XU Yang, LIU Yang. Differential Privacy Linear Regression Algorithm Based on Principal Component Analysis andFunctional Mechanism [J]. Computer Science, 2023, 50(8): 342-351. |
[8] | LI Rongchang, ZHENG Haibin, ZHAO Wenhong, CHEN Jinyin. Data Reconstruction Attack for Vertical Graph Federated Learning [J]. Computer Science, 2023, 50(7): 332-338. |
[9] | ZHANG Lianfu, TAN Zuowen. Robust Federated Learning Algorithm Based on Adaptive Weighting [J]. Computer Science, 2023, 50(6A): 230200188-9. |
[10] | ZHAO Yuqi, YANG Min. Review of Differential Privacy Research [J]. Computer Science, 2023, 50(4): 265-276. |
[11] | PENG Yuefeng, ZHAO Bo, LIU Hui, AN Yang. Survey on Membership Inference Attacks Against Machine Learning [J]. Computer Science, 2023, 50(3): 351-359. |
[12] | LIU Likang, ZHOU Chunlai. RCP:Mean Value Protection Technology Under Local Differential Privacy [J]. Computer Science, 2023, 50(2): 333-345. |
[13] | SUN Min, XU Senwei, SHAN Tong. LN-ERCL Lightning Network Optimization Scheme [J]. Computer Science, 2023, 50(11A): 230200115-5. |
[14] | YIN Shiyu, ZHU Youwen, ZHANG Yue. Utility-optimized Local Differential Privacy Joint Distribution Estimation Mechanisms [J]. Computer Science, 2023, 50(10): 315-326. |
[15] | XU Miaomiao, CHEN Zhenping. Incentive Mechanism for Continuous Crowd Sensing Based Symmetric Encryption and Double Truth Discovery [J]. Computer Science, 2023, 50(1): 294-301. |
|