Computer Science ›› 2024, Vol. 51 ›› Issue (5): 27-34.doi: 10.11896/jsjkx.230100086
• Database & Big Data & Data Science • Previous Articles Next Articles
BAO Kainan1,2,3, ZHANG Junbo1,2,3, SONG Li2,3, LI Tianrui1
CLC Number:
[1]AGARWAL P K,GURJAR J,AGARWAL A K,et al.Application of artificial intelligence for development of intelligent transport system in smart cities[J].International Journal of Transportation Engineering and Traffic System,2015,1(2):20-30. [2]FAN Z,SONG X,SHIBASAKI R,et al.Citymomen-tum:an online approach for crowd behavior prediction at a citywide level[C]//Proceedings of the 2015 ACM International Joint Confe-rence on Pervasive and Ubiquitous Computing.2015:559-569. [3]ABADI A,RAJABIOUN T,IOANNOU P A.Traffic flow prediction for road transportation networks with limited traffic data[J].IEEE Transactions on Intelligent Transportation Systems,2014,16(2):653-662. [4]HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. [5]ZHANG J,ZHENG Y,QI D,et al.DNN-based prediction model for spatio-temporal data[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.2016:1-4. [6]ZHANG J,ZHENG Y,QI D.Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Thirty-first AAAI Conference on Artificial Intelligence.2017. [7]LIN Z,FENG J,LU Z,et al.Deepstn+:Context-aware spatial-temporal neural network for crowd flow prediction in metropolis[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33(1):1020-1027. [8]GUO S,LIN Y,LI S,et al.Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(10):3913-3926. [9]LI T,ZHANG J,BAO K,et al.Autost:Efficient neural architecture search for spatio-temporal prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:794-802. [10]GAO H L,XU Y B,HOU D Z,et al.Short-term traffic flow prediction algorithm for road network based on deep asynchronous residual network[J].Journal of Jilin University(Engineering and Technology Edition),2023,53(12):3458-3464. [11]LECUN Y,BOSER B,DENKER J S,et al.Backpropagation applied to handwritten zip code recognition[J].Neural computation,1989,1(4):541-551. [12]ROSENBLATT F.Principles of neurodynamics.perceptrons and the theory of brain mechanisms[R].Cornell Aeronautical Lab Inc Buffalo NY,1961. [13]TOUVRON H,BOJANOWSKI P,CARON M,et al.Resmlp:Feedforward networks for image classification with data-efficient training[J].arXiv:2105.03404,2022. [14]TOLSTIKHIN I O,HOULSBY N,KOLESNIKOV A,et al.Mlp-mixer:An all-mlp architecture for vision[J].Advances in Neural Information Processing Systems,2021,34:24261-24272. [15]DING X,XIA C,ZHANG X,et al.Repmlp:Re-parameterizing convolutions into fully-connected layers for image recognition[J].arXiv:2105.01883,2021. [16]TANG Y,HAN K,GUO J,et al.An image patch is a wave:Phase-aware vision mlp[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10935-10944. [17]TRAN D,BOURDEV L,FERGUS R,et al.Learning spatiotemporal features with 3d convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:4489-4497. [18]LIU H,SIMONYAN K,YANG Y.Darts:Differentiable architecture search[J].arXiv:1806.09055,2018. [19]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [20]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022. [21]YUAN K,GUO S,LIU Z,et al.Incorporating convolution designs into visual transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:579-588. [22]SHI W,CABALLERO J,HUSZÁR F,et al.Real-time singleimage and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1874-1883. [23]SHI X,CHEN Z,WANG H,et al.Convolutional LSTM network:A machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems(Volume 1).2015:802-810. [24]NGUYEN Q,HEIN M.The loss surface of deep and wide neural networks[C]//International Conference on Machine Lear-ning.PMLR,2017:2603-2612. |
[1] | SHEN Zhehui, WANG Kailai, KONG Xiangjie. Exploring Station Spatio-Temporal Mobility Pattern:A Short and Long-term Traffic Prediction Framework [J]. Computer Science, 2023, 50(7): 98-106. |
[2] | LI Rong-fan, ZHONG Ting, WU Jin, ZHOU Fan, KUANG Ping. Spatio-Temporal Attention-based Kriging for Land Deformation Data Interpolation [J]. Computer Science, 2022, 49(8): 33-39. |
[3] | WANG Ming, PENG Jian, HUANG Fei-hu. Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction [J]. Computer Science, 2022, 49(8): 40-48. |
[4] | YOU Lan, HAN Xue-wei, HE Zheng-wei, XIAO Si-yu, HE Du, PAN Xiao-meng. Improved Sequence-to-Sequence Model for Short-term Vessel Trajectory Prediction Using AIS Data Streams [J]. Computer Science, 2020, 47(9): 169-174. |
[5] | ZHANG De-gan, YANG Peng, ZHANG Jie, GAO Jin-xin, ZHANG Ting. New Method of Traffic Flow Forecasting of Connected Vehicles Based on Quantum Particle Swarm Optimization Strategy [J]. Computer Science, 2020, 47(11A): 327-333. |
[6] | LIU Chang-yun,YANG Yu-di,ZHOU Li-hua,ZHAO Li-hong. Discovering Popular Social Location with Time Label [J]. Computer Science, 2019, 46(7): 186-194. |
[7] | KONG Fan-yu, ZHOU Yu-feng, CHEN Gang. Traffic Flow Prediction Method Based on Spatio-Temporal Feature Mining [J]. Computer Science, 2019, 46(7): 322-326. |
[8] | SHEN Xia-jiong, ZHANG Jun-tao, HAN Dao-jun. Short-term Traffic Flow Prediction Model Based on Gradient Boosting Regression Tree [J]. Computer Science, 2018, 45(6): 222-227. |
[9] | . Fuzzy Neural Networks Based on IPSO for Traffic Flow Prediction [J]. Computer Science, 2012, 39(10): 190-192. |
|