Computer Science ›› 2024, Vol. 51 ›› Issue (6): 282-298.doi: 10.11896/jsjkx.230400005
• Artificial Intelligence • Previous Articles Next Articles
HOU Lei1, LIU Jinhuan1, YU Xu2, DU Junwei1
CLC Number:
[1]GU J,WANG Z,KUEN J,et al.Recent advances in convolu-tional neural networks[J].Pattern Recognition,2018,77:354-377. [2]MEDSKER L R,JAIN L C.Recurrent neural networks[J].Design and Applications,2001,5:64-67. [3]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [4]GORI M,MONFARDINI G,SCARSELL F.A new model for learning in graph domains[C]//2005 IEEE International Joint Conference on Neural Networks.New York:IEEE,2005:729-734. [5]SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2008,20(1):61-80. [6]NIEPERT M,AHMED M,KUTZKOV K.Learning convolu-tional neural networks for graphs[C]//International Conference on Machine Learning.New York:ACM,2016:2014-2023. [7]GAO H,WANG Z,JI S.Large-scale learnable graph convolu-tional networks[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.New York:ACM,2018:1416-1424. [8]ATWOOD J,TOWSIEV D.Diffusion-convolutional neural networks[J].Advances in Neural Information Processing Systems,2016,9:2001-2009. [9]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online lear-ning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.New York:ACM,2014:701-710. [10]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.New York:ACM,2016:855-864. [11]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[J].arXiv:1310.4546,2013. [12]BERG R,KIPF T N,WELLING M.Graph convolutional matrix completion[J].arXiv:1706.02263,2017. [13]VELICKOVIC P,CUCURULL G,Casanova A,et al.Graph attention networks[J].arXiv:1710.10903,2018. [14]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035. [15]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2020:639-648. [16]FAN W,MA Y,LI Q,et al.Graph neural networks for social recommendation[C]//The world Wide Web Conference.New York:ACM,2019:417-426. [17]LIU F,CHENG Z,ZHU L,et al.An attribute-aware attentive GCN model for attribute missing in recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(9):4077-4088. [18]WANG X,HE X,CAO Y,et al.Kgat:Knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.New York:ACM,2019:950-958. [19]FAN S,ZHU J,HAN X,et al.Metapath-guided heterogeneous graph neural network for intent recommendation[C]//Procee-dings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2019:2478-2486. [20]VASHISHTH S,BHANDARI M,YADAV P,et al.Incorporating syntactic and semantic information in word embeddings using graph convolutional networks[J].arXiv:1809.04283,2018. [21]WANG K,SHEN W,YANG Y,et al.Relational graph attention network for aspect-based sentiment analysis[J].arXiv:2004.12362,2020. [22]LIU Z,XIONG C,SUN M,et al.Fine-grained fact verificationwith kernel graph attention network[J].arXiv:1910.09796,2019. [23]WANG D,LIU P,ZHENG Y,et al.Heterogeneous graph neural networks for extractive document summarization[J].arXiv:2004.12393,2020. [24]CHEN Z M,WEI X S,WANG P,et al.Multi-label image recognition with graph convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE,2019:5177-5186. [25]GAO J,ZHANG T,XU C.I know the relationships:Zero-shot action recognition via two-stream graph convolutional networks and knowledge graphs[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.Menlo Park:AAAI,2019,33(1):8303-8311. [26]HAN K,WANG Y,GUO J,et al.Vision GNN:An Image is Worth Graph of Nodes[J].arXiv:2206.00272,2022. [27]ZHANG Z,SHI Y,YUAN C,et al.Object relational graph with teacher-recommended learning for video captioning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE,2020:13278-13288. [28]MOHAMED A,QIAN K,ELHOSEINY M,et al.Social-stgcnn:A social spatio-temporal graph convolutional neural network for human trajectory prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE,2020:14424-14432. [29]HAN K,LAKSHMINARAYANNA B,LIU J.Reliable graph neural networks for drug discovery under distributional shift[J].arXiv:2111.12951,2021. [30]ZHAO H,WANG Y,DUAN J,et al.Multivariate time-seriesanomaly detection via graph attention network[C]//2020 IEEE International Conference on Data Mining(ICDM).New York:IEEE,2020:841-850. [31]DENG A,HOOI B.Graph neural network-based anomaly detection in multivariate time series[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Menlo Park:AAAI,2021,35(5):4027-4035. [32]CUI Z,LI Z,WU S,et al.Dressing as a whole:Outfit compatibility learning based on node-wisegraph neural networks[C]//The World Wide Web Conference.New York:ACM,2019:307-317. [33]TONG Z,LIANG Y,SUN C,et al.Directed graph convolutional network[J].arXiv:2004.13970,2020. [34]KAMPFFMEVER M,CHEN Y,LIANG X,et al.Rethinkingknowledge graph propagation for zero-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE,2019:11487-11496. [35]DUAN D,LI Y,JIN Y,et al.Community mining on dynamic weighted directed graphs[C]//Proceedings of the 1st ACM International Workshop on Complex Networks Meet Information &Knowledge Management.New York:ACM,2009:11-18. [36]ZHANG Y,XIONG Y,KONG X,et al.Deep collective classification in heterogeneous information networks[C]//Proceedings of the 2018 World Wide Web Conference.New York:ACM,2018:399-408. [37]LI Y,YU R,SHAHABI C,et al.Diffusion convolutional recurrent neural network:Data-driven traffic forecasting[J].arXiv:1707.01926,2017. [38]YAN S,XIONG Y,LIN D.Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.Menlo Park:AAAI,2018. [39]HUANG Y,XU H,DUAN Z,et al.Modeling complex spatial patterns with temporal features via heterogenous graph embedding networks[J].arXiv:2008.08617,2020. [40]BECK D,HAFFARI G,COHN T.Graph-to-sequence learning using gated graph neural networks[J].arXiv:1806.09835,2018. [41]LI Y,TARLOW D,BROCKSCHMIDT M,et al.Gated graphsequence neural networks[J].arXiv:1511.05493,2015. [42]ABDI H,WILLIAMA L J.Principal component analysis[J].WileyInterdisciplinary Reviews:Computational Statistics,2010,2(4):433-459. [43]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of machine Learning Research,2003,3(Jan):993-1022. [44]CARDOSO J F,COMON P.Independent component analysis,a survey of some algebraic methods[C]//1996 IEEE International Symposium on Circuits and Systems,Circuits and Systems Connecting the World(ISCAS 96).New York:IEEE,1996:93-96. [45]TANG J,QU M,WANG M,et al.Line:Large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web.New York:ACM,2015:1067-1077. [46]ERUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and deep locally connected networks on graphs[C]//2nd International Conference on Learning Representations.2014. [47]MA S,LIU J W,ZUO X.Survey on Graph Neural Network[J].Journal of Computer Research and Development,2022,59(1):47-80. [48]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.2016:3844-3852. [49]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [50]LI R,WANG S,ZHU F,et al.Adaptive graph convolutional neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Menlo Park:AAAI,2018. [51]XU B,SHEN H,CAO Q,et al.Graph wavelet neural network[J].arXiv:1904.07785,2019. [52]MICHELI A.Neural network for graphs:A contextual con-structive approach[J].IEEE Transactions on Neural Networks,2009,20(3):498-511. [53]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014. [54]GEHRING J,AULI M,GRANGIER D,et al.A convolutionalencoder model for neural machine translation[J].arXiv:1611.02344,2016. [55]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [56]CHENG J,DONG L,LAPATA M.Long short-term memory-networks for machine reading[J].arXiv:1601.06733,2016. [57]ZHANG J,SHI X,XIE J,et al.Gaan:Gated attention networks for learning on large and spatiotemporal graphs[J].arXiv:1803.07294,2018. [58]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2016:770-778. [59]LI G,MULLER M,THABET A,et al.Deepgcns:Can gcns go as deep as cnns?[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.New York:IEEE,2019:9267-9276. [60]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely con-nected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2017:4700-4708. [61]YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122,2015. [62]ZHENG Y,GAO C,CHEN L,et al.Dgcn:Diversified recommendation with graph convolutional networks[C]//Proceedings of the Web Conference 2021.New York:ACM,2021:401-412. [63]LIANG X,SHEN X,FENG J,et al.Semantic object parsingwith graph lstm[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,Part I 14.Amsterdam:Springer,2016:125-143. [64]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24. [65]GILMER J,SCHOENHOLZ S S,RILEY P F,et al.Neural message passing for quantum chemistry[C]//International Confe-rence on Machine Learning.PMLR,2017:1263-1272. [66]WANG X,GIRSHICK R,GUPTA A,et al.Non-local neuralnetworks[C]//Proceedings of the IEEE Conference on Compu-ter Vision and Pattern Recognition.2018:7794-7803. [67]BATTAGLIA P W,HAMRICK J B,BAPST V,et al.Relational inductive biases,deep learning,and graph networks[J].arXiv:1806.01261,2018. [68]DUVENAUD D K,MACLAURIN D,IPARRAGUIRRE J,et al.Convolutional networks on graphs for learning molecular fingerprints[C]//Proceedings of the 28st International Confe-rence on Neural Information Processing Systems December.2015:2224-2232. [69]SCHUTT K T,ARBABZADAH F,CHMIELA S,et al.Quantum-chemical insights from deep tensor neural networks[J].Nature Communications,2017,8(1):1-8. [70]BUADES A,COLL B,MOREL J M.A non-local algorithm for image denoising[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05).New York:IEEE,2005:60-65. [71]BATTAGLIA P,PASCANU R,LAI M,et al.Interaction networks for learning about objects,relations and physics[C]//Proceedings of the 28st International Conference on Neural Information Processing Systems December.2016:4509-4517. [72]TOMASI C,MANDUCHI R.Bilateral filtering for gray and co-lor images[C]//Sixth international Conference on Computer Vision.New York:IEEE,1998:839-846. [73]HAMRICK J B,ALLEN K R,BAPST V,et al.Relational inductive bias for physical construction in humans and machines[J].arXiv:1806.01203,2018. [74]ZHANG M,CHEN Y.Inductive matrix completion based ongraph neural networks[J].arXiv:1904.12058,2019. [75]YING R,HE R,CHEN K,et al.Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2018:974-983. [76]ZHANG C,LI Q,SONG D.Aspect-based sentiment classification with aspect-specific graph convolutional networks[J].arXiv:1909.03477,2019. [77]ZHANG N,DENG S,SUN Z,et al.Long-tail relation extraction via knowledge graph embeddings and graph convolution networks[J].arXiv:1903.01306,2019. [78]SAXENA A,TRIPATHI A,TALUKDAR P.Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:4498-4507. [79]PENG H,LI J,HE Y,et al.Large-scale hierarchical text classification with recursively regularized deep graph-cnn[C]//Proceedings of the 2018 World Wide Web Conference.2018:1063-1072. [80]YAO L,MAO C,LUO Y.Graph convolutional networks fortext classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33(1):7370-7377. [81]WANG X,YE Y,GUPTA A.Zero-shot recognition via semantic embeddings and knowledge graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2018:6857-6866. [82]GARCIA V,BRUNA J.Few-shot learning with graph neuralnetworks[J].arXiv:1711.04043,2017. [83]SHI W,RAJKUMAR R.Point-gnn:Graph neural network for 3d object detection in a point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE,2020:1711-1719. [84]TENEY D,AMDERSON P,HE X,et al.Tips and tricks for visual question answering:Learnings from the 2017 challenge[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4223-4232. |
[1] | ZHANG Mingdao, ZHOU Xin, WU Xiaohong, QING Linbo, HE Xiaohai. Unified Fake News Detection Based on Semantic Expansion and HDGCN [J]. Computer Science, 2024, 51(4): 299-306. |
[2] | ZHANG Tao, CHENG Yifei, SUN Xinxu. Graph Attention Networks Based on Causal Inference [J]. Computer Science, 2023, 50(6A): 220600230-9. |
[3] | YANG Ying, ZHANG Fan, LI Tianrui. Aspect-based Sentiment Analysis Based on Dual-channel Graph Convolutional Network with Sentiment Knowledge [J]. Computer Science, 2023, 50(5): 230-237. |
[4] | LI Shuai, XU Bin, HAN Yike, LIAO Tongxin. SS-GCN:Aspect-based Sentiment Analysis Model with Affective Enhancement and Syntactic Enhancement [J]. Computer Science, 2023, 50(3): 3-11. |
[5] | QIN Mingfei, FU Guohong. Multi-level Semantic Structure Enhanced Emotional Cause Span Extraction in Conversations [J]. Computer Science, 2023, 50(12): 236-245. |
[6] | ZHANG Longji, ZHAO Hui. Aspect-level Sentiment Analysis Integrating Syntactic Distance and Aspect-attention [J]. Computer Science, 2023, 50(12): 262-269. |
[7] | DENG Ruhan, ZHANG Qinghua, HUANG Shuaishuai, GAO Man. Novel Graph Convolutional Network Based on Multi-granularity Feature Fusion for Aspect-basedSentiment Analysis [J]. Computer Science, 2023, 50(10): 80-87. |
[8] | ZHENG Cheng, MEI Liang, ZHAO Yiyan, ZHANG Suhang. Text Classification Method Based on Bidirectional Attention and Gated Graph Convolutional Networks [J]. Computer Science, 2023, 50(1): 221-228. |
[9] | ZHOU Hai-yu, ZHANG Dao-qiang. Multi-site Hyper-graph Convolutional Neural Networks and Application [J]. Computer Science, 2022, 49(3): 129-133. |
[10] | PAN Zhi-hao, ZENG Bi, LIAO Wen-xiong, WEI Peng-fei, WEN Song. Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification [J]. Computer Science, 2022, 49(3): 294-300. |
[11] | ZHANG Bin, LIU Chang-hong, ZENG Sheng, JIE An-quan. Speech-driven Personal Style Gesture Generation Method Based on Spatio-Temporal GraphConvolutional Networks [J]. Computer Science, 2022, 49(11A): 210900094-5. |
[12] | ZENG Wei-liang, CHEN Yi-hao, YAO Ruo-yu, LIAO Rui-xiang, SUN Wei-jun. Application of Spatial-Temporal Graph Attention Networks in Trajectory Prediction for Vehicles at Intersections [J]. Computer Science, 2021, 48(6A): 334-341. |
[13] | JIANG Zong-li, LI Miao-miao, ZHANG Jin-li. Graph Convolution of Fusion Meta-path Based Heterogeneous Network Representation Learning [J]. Computer Science, 2020, 47(7): 231-235. |
|