Computer Science ›› 2024, Vol. 51 ›› Issue (7): 59-70.doi: 10.11896/jsjkx.230400143
• Database & Big Data & Data Science • Previous Articles Next Articles
ZHANG Daili, WANG Tinghua, ZHU Xinglin
CLC Number:
[1]RATHORE M M,SHAH S A,SHUKLA D,et al.The role of AI,machine learning,and big data in digital twinning:A syste-matic literature review,challenges,and opportunities[J].IEEE Access,2021,9:32030-32052. [2]DEEPA N,PHAM Q V,NGUYEN D C,et al.A survey onblockchain for big data:Approaches,opportunities,and future directions[J].Future Generation Computer Systems,2022,131(C):209-226. [3]TENG K D,ZHAO Q,TAN H R,et al.Emotional EEG recognition based on SVM-KNN algorithm [J].Computer System Application,2022,31(2):298-304. [4]GROTHER P J,CANDELA G T,BLUE J L.Fast implemen-tations of nearest neighbor classifiers[J].Pattern Recognition,1997,30(3):459-465. [5]OUGIARIGLOU S,DIAMANTARAS K I,EVANGELIDIS G.Exploring the effect of data reduction on neural network and support vector machine classification[J].Neurocomputing,2018,280:101-110. [6]CHARBUTY B,ABDULAZEEZ A.Classification based on decision tree algorithm for machine learning[J].Journal of Applied Science and Technology Trends,2021,2(1):20-28. [7]LEE C S,CHEANG P Y S,MOSLEHPOUR M.Predictive analytics in business analytics:Decision tree[J].Advances in Decision Sciences,2022,26(1):1-29. [8]CORTES C,VAPNIK V.Support vector machine[J].Machine Learning,1995,20(3):273-297. [9]BALASUBRAMANIAM V.Artificial intelligence algorithmwith SVM classification using dermascopic images for melanoma diagnosis[J].Journal of Artificial Intelligence and Capsule Networks,2021,3(1):34-42. [10]NAEEM M,JAMAL T,DIAZ-MARTINEZ J,et al.Trends and futureperspective challenges in big data[M]//Advances in intelligent data analysis and applications.Singapore:Springer,2022:309-325. [11]XU X,LIANG T,ZHU J,et al.Review of classical dimensionality reduction and sample selection methods for large-scale data processing[J].Neurocomputing,2019,328:5-15. [12]ZHOU Z H.Machine learning[M].Singapore:Springer Nature,2021:2-17. [13]YANG J F,QIAO P R,LI Y M,et al.A review of research on machine learning classification problems and algorithms [J].Statistics and Decision,2019,35(6):36-40. [14]VAPNIK V,IZMAILOV R.Reinforced SVM method and memorization mechanisms[J].Pattern Recognition,2021,119:108018. [15]SZELISKI R.Computer vision:Algorithms and applications[M].Berlin:Springer Nature,2022:273-300. [16]MOCHIDA K,KODA S,INOUE K,et al.Computer vision-based phenotyping for improvement of plant productivity:A machine learning perspective[J].GigaScience,2018,8(1):1-12. [17]DHAR A,MUKHERJEE H,DASH N S,et al.Text categorization:past and present[J].Artificial Intelligence Review,2021,54(4):3007-3054. [18]LUO X.Efficient English text classification using selected machine learning techniques[J].Alexandria Engineering Journal,2021,60(3):3401-3409. [19]MOHAMMADI M,RASHID T A,KARIM S H T,et al.Acomprehensive survey and taxonomyof the SVM-based intrusion detection systems[J].Journal of Network and Computer Applications,2021,178:102983. [20]ZHANG X,LI C,WANG X,et al.A novel fault diagnosis procedure based on improved symplectic geometry mode decomposition and optimized SVM[J].Measurement,2021,173:108644. [21]WANG M,CHEN Y,ZHANG X,et al.Roller bearing fault diagnosis based on integrated fault feature and SVM[J].Journal of Vibration Engineering & Technologies,2022,10(3):853-862. [22]ALI W,TIAN W,DIN S U,et al.Classical and modern face re-cognition approaches:A complete review[J].Multimedia Tools and Applications,2021,80(3):4825-4880. [23]SALAMH A B S,AKYüZ H I.A new deep learning model for face recognition and registration in distance learning[J].International Journal of Emerging Technologies in Learning,2022,17(12):29. [24]ALWAJIDI S,YANG L.Multiresolution hierarchical supportvector machine for classification of large datasets[J].Know-ledge and Information Systems,2022,64(12):1-16. [25]GOYAL S.Effectivesoftware defect prediction using supportvector machines[J].International Journal of System Assurance Engineering and Management,2022,13(2):681-696. [26]TANVEER M,RAJANI T,RASTOGI R,et al.Comprehensive review on twin support vector machines[J].arXiv:2105.00336,2022. [27]DASH R,DASH D K,PANDA R S.Linguistic information for decision-making using SVM[M]//Advances in data science and management.Singapore:Springer,2022:3-10. [28]WANG T H,CHEN J T.A review of research on the selection of kernel functions[J].Computer Engineering and Design,2012,33(3):1181-1186. [29]ALSHUDUKHI J S.Smart and interactive healthcare systembased on speech recognition using soft margin formulation and kernel trick[J].International Journal of System Assurance Engineering and Management,2022,15:324-333. [30]WANG Q.Support vector machine algorithm inmachine learning[C]//2022 IEEE International Conference on Artificial Intelligence and Computer Applications.IEEE,2022:750-756. [31]DIVYANTH L G,CHELLADURAI V,LOGANATHAN M,et al.Identification of green gram(vigna radiata) grains infested by callosobruchus maculatus through X-ray imaging and GAN-based image augmentation[J].Journal of Biosystems Enginee-ring,2022,47(3):302-317. [32]NAGPAL M,KAUSHAL M,SHARMA A.A feature reduced intrusion detection system with optimized SVM using big bang big crunch optimization[J].Wireless Personal Communications,2022,122(2):1939-1965. [33]HASSANAT A B,ALI H N,TARAWNEHA S,et al.Magneticforce classifier:A novel method for big data classification[J].IEEE Access,2022,10:12592-12606. [34]GAYE B,ZHANG D,WULAMU A.Improvement of support vector machine algorithm in big data background[J].Mathema-tical Problems in Engineering,2021,2021:1-9. [35]ALI A A A,MALLAIAH S.Intelligent handwritten recognition using hybrid CNN architectures based-SVM classifier with dropout[J].Journal of King Saud University-Computerand Information Sciences,2022,34(6):3294-3300. [36]KUDO T,MATSUMOTO Y.Chunking with support vectormachines[C]//Proceedings of the 2nd Conference of the North American Chapter of the Association for Computational Linguistics on Language technologies.Association for Computational Linguistics,2001:1-8. [37]SINGH K R,NEETHU K P,MADHUREKAA K,et al.ParallelSVM model for forest fire prediction[J].Soft Computing Letters,2021,3:100014. [38]BADR E,ALMOTAIRI S,SALAM M A,et al.New sequentialand parallel supportvector machine with grey wolf optimizer for breast cancer diagnosis[J].Alexandria Engineering Journal,2022,61(3):2520-2534. [39]DESHPANDE N J,KARIBASAPPA K G,TOTAD S G.Comparative analysis of optimization techniques on multi-classSVM[C]//International Conference for Emerging Technology.IEEE,2022:1-6. [40]QIN Y,DING S F.A review of semi-supervised clustering[J].Computer Science,2019,46(9):15-21. [41]HUANG H,XIONG W,WU K et al.K-means hybrid iterative clustering based on memory transfer flagfish optimization [J].Journal of Shanghai Jiaotong University,2022,56(12):1638. [42]YAO Y,LIU Y,YU Y,et al.K-SVM:An effective SVM algo-rithm based on k-means clustering[J].Journal of Computers,2013,8(10):2632-2639. [43]ALMEIDA M,BRAGA A,BRAGA J P.SVM-KM:SpeedingSVMs learning with a priori cluster selection and k-means[C]//Proceedings of the 6th Brazilian Symposium on Neural Networks.IEEE,2000:162-167. [44]BANG S,JHUN M.Weightedsupport vector machine using k-means clustering[J].Communications in Statistics-Simulation and Computation,2014,43(10):2307-2324. [45]KOGGALAGE R,HALGAMUGE S.Reducing the number oftraining samples for fast support vectormachine classification[J].Neural Information Processing-Letters and Reviews,2004,2(3):57-65. [46]SHEN X J,MU L,LI Z,et al.Large-scale support vector ma-chine classification with redundant data reduction[J].Neurocomputing,2016,172:189-197. [47]JAVADI S,HASHEMY SHAHDANY S M,NESHAT A,et al.Multi-parameter risk mapping of qazvin aquifer by classic and fuzzy clustering techniques[J].Geocarto International,2022,37(4):1160-1182. [48]CERVANTES J,LI X,YU W.Support vector machine classification based on fuzzy clustering for large datasets[C]//Mexican International Conference on Artificial Intelligence.Springer,2006:572-582. [49]MANIMALA K,DAVID I G,SELVI K.A novel dataselection technique using fuzzy c-means clustering to enhance SVM-based power quality classification[J].Soft Computing,2015,19(11):3123-3144. [50]ALMASI O N,ROUHANI M.Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets[J].Turkish Journal of Electrical Engineering and Computer Sciences,2016,24(1):219-233. [51]WANG L,SUI M,LI Q,et al.A new method of sample reduction for support vector classification[C]//Asia-Pacific Services Computing Conference.IEEE,2012:301-304. [52]KRISHNA D P,SENGUTTUVAN A,LATHA T S.Clustering on large numeric data sets using hierarchical approach:Birch[J].Global Journal of Computer Science and Technology,2012,12(C12):29-32. [53]YU H,YANG J,HAN J,et al.Making SVMs scalable to large data sets using hierarchical cluster indexing[J].Data Mining and Knowledge Discovery,2005,11(3):295-321. [54]CHU Z,WANG W,LI B,et al.An operation health status monitoring algorithm of special transformers based on birch and Gaussian cloud methods[J].Energy Reports,2021,7:253-260. [55]LANG A,SCHUBERT E.Betula:Numerically stable CF-trees forbirch clustering[C]//International Conference on Similarity Search and Applications.Springer,2020:281-296. [56]ALZU’BI A,BARHAM M.Automatic birch thresholding with features transformation for hierarchical breast cancer clustering[J].International Journal of Electrical and Computer Enginee-ring,2022,12(2):1498-1507. [57]AWAD M,KHAN L,BASTANI F,et al.An effective support vector machines performance using hierarchical clustering[C]//Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence.IEEE,2004:663-667. [58]LUO F,KHAN L,BASTANI F,et al.A dynamically growingself-organizing tree(DGSOT) for hierarchical clustering gene expression profiles[J].Bioinformatics,2004,20(16):2605-2617. [59]HE D J,WU X R,YU L.Research ondensity clustering methods[J].Communications Technology,2022,55(2):135-142. [60]WU F F,ZHAO Y L,JIANG Z F.Support vector machine classification algorithm based ondensity clustering[J].Academic Journal of Xi’an Jiaotong University,2005,39(12):1319-1322. [61]ZHANG H,ZOU K Q,CUI J,et al.An improved fuzzy support vector machine based on density clustering[J].Computer Engineering,2009,35(5):194-196. [62]AKASAPU A K,RAO P S,SHARMA L K,et al.Density based k-nearest neighbors clustering algorithm for trajectory data[J].International Journal of Advanced Science and Technology,2011,31(1):47-57. [63]ZHAO F J,HE X S,WANG J.An improved support vector machine based on density clustering[J].Journal of Jiamusi University:Natural Science Edition,2010,28(4):587-589. [64]SCHIILKOP P B,BURGEST C,VAPNIK V.Extracting support data for a given task[C]//Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining.AAAI Press,1995:252-257. [65]SHI P,KUANG L,TANG Y,et al.Pond water quality data stream anomaly detection based on improved SVDD algorithm[J].Journal of Agricultural Engineering,2021,37(24):249-256. [66]ZHANG Y,CHI Z X,XIE F D.Improved PCM-based support vector description of multiclass classifier[J].Computer Science,2008(8):149-153. [67]CERVANTES J,LI X,YU W,et al.Supportvector machineclassification for large data sets via minimum enclosing ball clustering[J].Neurocomputing,2008,71(4/5/6):611-619. [68]TSANG I W,KWOK J T,CHEUNG P M,et al.Core vector machines:Fast SVM training on very large data sets[J].Journal of Machine Learning Research,2005,6(4):363-392. [69]TSANG I W H,KWOK J T Y,ZURADA J M.Generalized core vector machines[J].IEEE Transactions on Neural Networks,2006,17(5):1126-1140. [70]WANG D,ZHANG B,ZHANG P,et al.An online core vector machine with adaptiveMEB adjustment[J].Pattern Recognition,2010,43(10):3468-3482. [71]LI D H,DU S X,WU T J.A fast incremental learning algorithm for linear support vector machines based on shell vectors [J].Journal of Zhejiang University:Engineering Science,2006,40(2):203-207. [72]BENNETT K P,BREDENSTEINER E J.Duality and geometry in SVM classifiers[C]//Proceedings of the International Confe-rence on Machine Learning.Citeseer,2000:57-64. [73]GOODRICH B,ALBRECHT D,TISCHER P.Algorithms forthe computation of reduced convex hulls[C]//Proceedings of the Australasian Joint Conference on Artificial Intelligence.Springer,2009:230-239. [74]CRISP D,BURGES C J.A geometric interpretation of v-SVM classifiers[J].Advances in Neural Information Processing Systems,1999,12:244-250. [75]MAVROFORAKIS M E,SDRALIS M,THEODORIDIS SA.Geometric nearest point algorithm for the efficient solution of the SVM classification task[J].IEEE Transactions on Neural Networks,2007,18(5):1545-1549. [76]MAVROFORAKIS M E,SDRALIS M,THEODORIDIS S.A novel SVM geometric algorithm based on reduced convex hulls[C]//Proceedings of the 18th International Conference on Pattern Recognition.IEEE,2006:564-568. [77]MAVROFORAKIS M E,THEODORIDIS S.A geometric approach to support vector machine classification[J].IEEE Tran-sactions on Neural Networks,2006,17(3):671-682. [78]LIU Z,LIU J G,PAN C,et al.A novel geometric approach to binary classification based on scaled convex hulls[J].IEEE Transactions on Neural Networks,2009,20(7):1215-1220. [79]CHAU A L,LI X,YU W.Large data sets classification using convex-concave hull and support vector machine[J].Soft Computing,2013,17(5):793-804. [80]LOPEZ-CHAU A,LI X,YU W.Convex-concave hullfor classification with support vector machine[C]//Proceedings of the 12th International Conference on Data Mining Workshops.IEEE,2012:431-438. [81]BIRZHANDI P,YOUN H Y.CBCH(clustering-based convexhull) for reducing training time of support vector machine[J].The Journal of Supercomputing,2019,75(8):5261-5279. [82]BARBER C B,DOBKIN D P,HUHDANPAA H.The quickhull algorithm for convex hulls[J].Association for Computing Machinery,1996,22(4):469-483. [83]WANG D,QIAO H,ZHAN B,et al.Online support vectormachine based on convex hull vertices selection[J].IEEE Transactions on Neural Networks and Learning Systems,2013,24(4):593-609. [84]FRANC V,HLAVÁČ V.An iterative algorithm learning themaximal margin classifier[J].Pattern Recognition,2003,36(9):1985-1996. [85]KHOSRAVANI H R,RUANO A E,FERREIRA P M.A convex hull-based data selection method for data driven models[J].Applied Soft Computing,2016,47:515-533. [86]OSUNA E,CASTRO O D.Convex hull in feature space for support vector machines[C]//Ibero-American Conference on Artificial Intelligence.Springer,2002:411-419. [87]SYED N A,LIU H,SUNG K K.Incremental learning with support vector machines[C]//Proceedings of the 2001 IEEE International Conference on Data Mining.IEEE,2001:641-642. [88]XU J,XU C,ZOU B,et al.New incrementallearning algorithm with support vector machines[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,49(11):2230-2241. [89]MITRA P,MURTHY C A,PAL S K.Data condensation inlarge databases by incremental learning with support vector machines[C]//Proceedings of the 15th International Conference on Pattern Recognition.IEEE,2000:708-711. [90]CAUWENBERGHS G,POGGIO T.Incremental and decremental support vector machine learning[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems.MIT Press,2000:388-394. [91]KATAGIRI S,ABE S.Incremental training of support vectormachines using hyperspheres[J].Pattern Recognition Letters,2006,27(13):1495-1507. [92]LI C,LIU K,WANG H.The incremental learning algorithmwith support vector machine based on hyperplane-distance[J].Applied Intelligence,2011,34(1):19-27. [93]WU C M,WANG X D,BAI D Y,et al.Fast SVM incremental learning algorithm based on class boundary hull vectors[J].Computer Engineering and Applications,2010,46(23):185-187. [94]WEN B,SHAN G L,DUAN X S.Research on incrementallearning algorithm based on KKT condition and hull vector [J].Computer Science,2013,40(3):4. [95]REN P,XIAO Y,CHANG X,et al.A survey ofdeep activelearning[J].ACM Computing Surveys,2021,54(9):1-40. [96]DEMIR B,PERSELLO C,BRUZZONE L.Batch-mode active-learning methods for the interactive classification of remote sen-sing images[J].IEEE Transactions on Geoscience and Remote Sensing,2010,49(3):1014-1031. [97]SASSANO M.An empirical study of active learning with support vector machines for Japanese word segmentation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics.Association for Natural Language Processing.2002:505-512. [98]SCHOHN G,COHN D.Less is more:active learning with support vector machines[C]//Proceedings of the 17th International Conference on Machine Learning.Morgan Kaufmann Publishers Inc.2000:839-846. [99]TONG S,KOLLER D.Support vector machine active learning with applications to text classification[J].Journal of Machine Learning Research,2002,2(1):999-1006. [100]XU Z,YU K,TRESP V,et al.Representative sampling for text classification using support vector machines[C]//European Conference on Information Retrieval.Springer,2003:393-407. [101]LI M,SETHI I K.Confidence-based active learning[J].IEEETransactions on Pattern Analysis and Machine Intelligence,2006,28(8):1251-1261. [102]XU H,LI L,GUO P,et al.Uncertainty SVM active learning algorithm based on convex hull and sample distance[C]//Proceedings of the 33th Chinese Control and Decision Conference.IEEE,2021:6815-6822. [103]LENG Y,QI G H,XU X Y,et al.A new SVM active learning algorithm based on KNN[C]//Advanced Materials Research.Trans Tech Publications Ltd.,2014:2906-2909. [104]XU H,BIE X,FENG H,et al.Multiclass SVM active learning algorithm based on decision directed acyclic graph and one versus one[J].Cluster Computing,2019,22(3):6241-6251. [105]GOUDJIL M,KOUDIL M,BEDDA M,et al.A novel activelearning method using SVM for text classification[J].International Journal of Automation and Computing,2018,15(3):290-298. [106]LEE Y J,MANGASARIAN O L.RSVM:Reduced support vector machines[C]//Proceedings of the 2001 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathematics,2001:1-17. [107]CHANG C C,LEE Y J.Generating the reduced set by systema-tic sampling[C]//International Conference on Intelligent Data Engineering and Automated Learning.Springer,2004:720-725. [108]CHIEN L J,CHANG C C,LEE Y J.Variant methods of reduced set selection for reduced support vector machines[J].Journal of Information Science and Engineering,2010,26(1):183-196. [109]BALCÁZAR J,DAI Y,WATANABE O.A random samplingtechnique for training support vectormachines[C]//Interna-tional Conference on Algorithmic Learning Theory.Springer,2001:119-134. [110]KAWULOK M,NALEPA J.Support vector machines training data selection using a genetic algorithm[C]//Proceedings of the 2012 Joint IAPR International Conference on Structural,Syntactic,and Statistical Pattern Recognition.2012:557-565. [111]NALEPA J,KAWULOK M.Adaptive Genetic Algorithm to Select Training Data for Support Vector Machines[C]//Procee-dings of the 17th European Conference onApplications of Evolutionary Computation.Springer,2014:514-525. [112]SHARIF I,CHAUDHURI D.A multiseed-based SVM classification technique for training sample reduction[J].Turkish Journal of Electrical Engineering and Computer Sciences,2019,27(1):595-604. [113]SUÁREZ C A L,QUINTANA D,CERVANTES A.A surveyon machine learning for recurring concept drifting data streams[J].Expert Systems with Applications,2022,213(2):118934. |
[1] | WEI Ziang, PENG Jian, HUANG Feihu, JU Shenggen. Text Classification Method Based on Multi Graph Convolution and Hierarchical Pooling [J]. Computer Science, 2024, 51(7): 303-309. |
[2] | CAO Yan, ZHU Zhenfeng. DRSTN:Deep Residual Soft Thresholding Network [J]. Computer Science, 2024, 51(6A): 230400112-7. |
[3] | LIANG Meiyan, FAN Yingying, WANG Lin. Fine-grained Colon Pathology Images Classification Based on Heterogeneous Ensemble Learningwith Multi-distance Measures [J]. Computer Science, 2024, 51(6A): 230400043-7. |
[4] | LI Xinrui, ZHANG Yanfang, KANG Xiaodong, LI Bo, HAN Junling. Intelligent Diagnosis of Brain Tumor with MRI Based on Ensemble Learning [J]. Computer Science, 2024, 51(6A): 230600043-7. |
[5] | WANG Yifan, ZHANG Xuefang. Modality Fusion Strategy Research Based on Multimodal Video Classification Task [J]. Computer Science, 2024, 51(6A): 230300212-5. |
[6] | WANG Zhaodan, ZOU Weiqin, LIU Wenjie. Buggy File Identification Based on Recommendation Lists [J]. Computer Science, 2024, 51(6A): 230600088-8. |
[7] | LIU Wei, SONG You, ZHUO Peiyan, WU Weiqiang, LIAN Xin. Study on Kcore-GCN Anti-fraud Algorithm Fusing Multi-source Graph Features [J]. Computer Science, 2024, 51(6A): 230600040-7. |
[8] | CHEN Xiangxiao, CUI Xin, DU Qin, TANG Haoyao. Study on Optimization of Abnormal Traffic Detection Model Based on Machine Learning [J]. Computer Science, 2024, 51(6A): 230700051-5. |
[9] | LI Guo, CHEN Chen, YANG Jing, QUN Nuo. Study on Tibetan Short Text Classification Based on DAN and FastText [J]. Computer Science, 2024, 51(6A): 230700064-5. |
[10] | HUANG Rui, XU Ji. Text Classification Based on Invariant Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230900018-5. |
[11] | SU Ruqi, BIAN Xiong, ZHU Songhao. Few-shot Images Classification Based on Clustering Optimization Learning [J]. Computer Science, 2024, 51(6A): 230300227-7. |
[12] | LYU Yiming, WANG Jiyang. Iron Ore Image Classification Method Based on Improved Efficientnetv2 [J]. Computer Science, 2024, 51(6A): 230600212-6. |
[13] | ZHOU Tianyang, YANG Lei. Study on Client Selection Strategy and Dataset Partition in Federated Learning Basedon Edge TB [J]. Computer Science, 2024, 51(6A): 230800046-6. |
[14] | ZHENG Yifan, WANG Maoning. Imbalanced Data Oversampling Method Based on Variance Transfer [J]. Computer Science, 2024, 51(6A): 230400198-6. |
[15] | SI Jia, LIANG Jianfeng, XIE Shuo, DENG Yingjun. Research Progress of Anomaly Detection in IaaS Cloud Operation Driven by Deep Learning [J]. Computer Science, 2024, 51(6A): 230400016-8. |
|