Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230400148-6.doi: 10.11896/jsjkx.230400148
• Big Data & Data Science • Previous Articles Next Articles
ZHAO Ziqi, YANG Bin, ZHANG Yuanguang
CLC Number:
[1]MEDINA-SALGADO B,SANCHEZ-DELACRUZ E,POZOS-PARRA P,et al.Urban traffic flow prediction techniques:A review[J].Sustainable Computing:Informatics and Systems,2022,35:100739. [2]WILLIAMS B M,HOEL L A.Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:Theoretical basis and empirical results[J].Journal of Transportation Enginee-ring,2003,129(6):664-672. [3]OKUTANI I,STEPHANEDES Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research Part B:Methodological,1984,18(1):1-11. [4]SMITH B L,WILLIAMS B M,OSWALD R K.Comparison of parametric and nonparametric models for traffic flow forecasting[J].Transportation Research Part C:Emerging Technologies,2002,10(4):303-321. [5]EMAMI A,SARVI M,BAGLOEE S A.Short-term traffic flow prediction based on faded memory Kalman Filter fusing data from connected vehicles and Bluetooth sensors[J].Simulation Modelling Practice and Theory,2020,102:102025. [6]HOU Q,LENG J,MA G,et al.An adaptive hybrid model for short-term urban traffic flow prediction[J].Physica A:Statistical Mechanics and its Applications,2019,527:121065. [7]LIN G,LIN A,GU D.Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient[J].Information Sciences,2022,608:517-531. [8]FENG X,LING X,ZHENG H,et al.Adaptive multi-kernelSVM with spatial-temporal correlation for short-term traffic flow prediction[J].IEEE Transactions on Intelligent Transportation Systems,2018,20(6):2001-2013. [9]LIU Z,LIU Y,MENG Q,et al.A tailored machine learning approach for urban transport network flow estimation[J].Transportation Research Part C:Emerging Technologies,2019,108:130-150. [10]ZHANG W,YU Y,QI Y,et al.Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J].Transportmetrica A:Transport Science,2019,15(2):1688-1711. [11]MA C,DAI G,ZHOU J.Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method[J].IEEE Transactions on Intelligent Transportation Systems,2021,23(6):5615-5624. [12]JIN X B,GONG W T,KONG J L,et al.PFVAE:a planar flow-based variational auto-encoder predicti on model for time series data[J].Mathematics,2022,10(4):610. [13]CHEN Z,ZHAO B,WANG Y,et al.Multitask learning andGCN-based taxi demand prediction for a traffic road network[J].Sensors,2020,20(13):3776. [14]ZHENG H,LIN F,FENG X,et al.A hybrid deep learning mo-del with attention-based conv-LSTM networks for short-term traffic flow prediction[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(11):6910-6920. [15]GUO S,LIN Y,LI S,et al.Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(10):3913-3926. [16]MA C,ZHAO Y,DAI G,et al.A novel STFSA-CNN-GRU hybrid model for short-term traffic speed prediction[J].IEEE Transactions on Intelligent Transportation Systems,2022,24(4):3728-3737. [17]BAO Y,HUANG J,SHEN Q,et al.Spatial-temporal complex graph convolution network for traffic flow prediction[J].Engineering Applications of Artificial Intelligence,2023,121:106044. [18]ZHAO L,SONG Y,ZHANG C,et al.T-gcn:A temporal graph convolutional network for traffic prediction[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(9):3848-3858. [19]HUANG X,YE Y,DING W,et al.Multi-mode dynamic residual graph convolution network for traffic flow prediction[J].Information Sciences,2022,609:548-564. [20]PENG H,WANG H,DU B,et al.Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[J].Information Sciences,2020,521:277-290. [21]RAJEH T M,LI T,LI C,et al.Modeling multi-regional temporal correlation with gated recurrent unit and multiple linear regression for urban traffic flow prediction[J].Knowledge-Based Systems,2023,262:110237. [22]LI Q,HAN Z,WU X M.Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018,32(1). |
[1] | CHEN Haoyang, ZHANG Lei. Very Short Texts Hierarchical Classification Combining Semantic Interpretation and DeBERTa [J]. Computer Science, 2024, 51(5): 250-257. |
[2] | WU Kewei, HAN Chao, SUN Yongxuan, PENG Menghao, XIE Zhao. Hierarchical Conformer Based Speech Synthesis [J]. Computer Science, 2024, 51(2): 161-171. |
[3] | LI Junwei, LIU Quan, XU Yapeng. Option-Critic Algorithm Based on Mutual Information Optimization [J]. Computer Science, 2024, 51(2): 252-258. |
[4] | LU Yuhan, CHEN Liquan, WANG Yu, HU Zhiyuan. Efficient Encrypted Image Content Retrieval System Based on SecureCNN [J]. Computer Science, 2023, 50(9): 26-34. |
[5] | WANG Zibo, ZHANG Yaofang, CHEN Yilu, LIU Hongri, WANG Bailing, WANG Chonghua. Hierarchical Task Network Planning Based Attack Path Discovery [J]. Computer Science, 2023, 50(9): 35-43. |
[6] | QIU Zhen, ZHENG Zhaohui. Graph Similarity Search with High Efficiency and Low Index [J]. Computer Science, 2023, 50(9): 130-138. |
[7] | YI Liu, GENG Xinyu, BAI Jing. Hierarchical Multi-label Text Classification Algorithm Based on Parallel Convolutional Network Information Fusion [J]. Computer Science, 2023, 50(9): 278-286. |
[8] | ZENG Qingwei, ZHANG Guomin, XING Changyou, SONG Lihua. Intelligent Attack Path Discovery Based on Hierarchical Reinforcement Learning [J]. Computer Science, 2023, 50(7): 308-316. |
[9] | YANG Zhenkai, CAO Yibing, ZHAO Xinke, ZHENG Jingbiao. Temporal Hierarchical Data Management Based on Nested Intervals Scheme in Relational Database [J]. Computer Science, 2023, 50(6A): 220500290-5. |
[10] | XU Yi, LUO Fan, WANG Min. Three-way Decision Movement Strategy Based on Hierarchical Clustering [J]. Computer Science, 2023, 50(6): 92-99. |
[11] | CHANG Liwei, LIU Xiujuan, QIAN Yuhua, GENG Haijun, LAI Yuping. Multi-source Fusion Network Security Situation Awareness Model Based on Convolutional Neural Network [J]. Computer Science, 2023, 50(5): 382-389. |
[12] | GUO Ruyan, WANG Yan, FAN Jianxi, FAN Weibei. Optimal Embedding of Hierarchical Cubic Networks into Linear Arrays of NoC [J]. Computer Science, 2023, 50(4): 249-256. |
[13] | YANG Xiaoyu, LI Chao, CHEN Shunyao, LI Haoliang, YIN Guangqiang. Text-Image Cross-modal Retrieval Based on Transformer [J]. Computer Science, 2023, 50(4): 141-148. |
[14] | WANG Lei, DU Liang, ZHOU Peng. Hierarchical Multiple Kernel K-Means Algorithm Based on Sparse Connectivity [J]. Computer Science, 2023, 50(2): 138-145. |
[15] | YANG Xin, LI Gengxin, LI Hui. EHFM:An Efficient Hierarchical Filtering Method for Multi-source Network Malicious Alerts [J]. Computer Science, 2023, 50(2): 324-332. |
|