Computer Science ›› 2024, Vol. 51 ›› Issue (8): 242-255.doi: 10.11896/jsjkx.230600164
• Artificial Intelligence • Previous Articles Next Articles
LI Haixia1, SONG Danlei2, KONG Jianing2, SONG Yafei3, CHANG Haiyan1
CLC Number:
[1]ATHEY S.The Impact of Machine Learning on Economics[M]//The Economics of Artificial Intelligence:An agenda.University of Chicago Press,2018:507-547. [2]WEI J,CHU X,SUN X Y,et al.Machine Learning in Materials Science[J].InfoMat,2019,1(3):338-358. [3]CARLEO G,CIRAC I,CRANMER K,et al.Machine Learning and Physical Sciences[J].Reviews of Modern Physics,2019,91(4):045002. [4]LIAKOS K G,BUSATA P,MOSHOU D,et al.Machine Lear-ning in Agriculture:A Review[J].Sensors,2018,18(8):2674. [5]TARCA A L,CAREY V J,CHEN X,et al.Machine Learningand Its Applications to Biology[J].PLoS Computational Biology,2007,3(6):e116. [6]CORTES C,VAPNIK V.Support-Vector Networks[J].Ma-chine Learning,1995,20:273-297. [7]BOSER B E,GUYON I M,VAPNIK V N.A Training Algorithm for Optimal Margin Classifiers[C]//Proceedings of the Fifth Annual Workshop on Computational Learning Theory.1992:144-152. [8]COVER T,HART P.Nearest Neighbor Pattern Classification[J].IEEE Transactions on Information Theory,1967,13(1):21-27. [9]HOSMER J R D W,LEMESHOW S,STURDIVANT R X.Applied Logistic Regression[M].John Wiley & Sons,2013. [10]FRIEDMAN J H.Greedy Function Approximation:A Gradient Boosting Machine[J].Annals of Statistics,2001,29:1189-1232. [11]FREUND Y,SCHAPIRE R E.A Decision-Theoretic Generalization of on-line Learning and an Application to Boosting[J].Journal of Computer and System Sciences,1997,55(1):119-139. [12]CHEN T,GUESTRIN C.Xgboost:A Scalable Tree BoostingSystem[C]//Proceedings of the 22nd ACM Sigkdd Interna-tional Conference on Knowledge Discovery and Data Mining.2016:785-794. [13]KE G,MENG Q,FINLEY T,et al.Lightgbm:A Highly Efficient Gradient Boosting Decision Tree[J].Advances in Neural Information Processing Systems,2017,30:3147-3155. [14]PROKHORENKOVA L,GUSEV G,VOROBEV A,et al.Cat-Boost:Unbiased Boosting with Categorical Features[J].Advances in Neural Information Processing Systems,2018,31:6638-6648. [15]HUTTER F,KOTTHOFF L,VANSCHOREN J.AutomatedMachine Learning:Methods,Systems,Challenges[M].Springer Nature,2019. [16]LIASHCHYNSKYI P,LIASHCHYNSKYI P.Grid Search,Random Search,Genetic Algorithm:A Big Comparison for NAS[J].arXiv:1912.06059,2019. [17]BERGSTRA J,BENGIO Y.Random Search for Hyper-Parameter Optimization[J].Journal of Machine Learning Research,2012,13(1):281-305. [18]SNOEK J,LAROCHELLE H,ADAMS R P.Practical Bayesian Optimization of Machine Learning Algorithms[J].Advances in Neural Information Processing Systems,2012,4:2951-2959. [19]BERGSTRA J,BARDENET R,BENGIO Y,et al.Algorithms for Hyper-parameter Optimization[C]//International Confe-rence on Neural Information Processing Systems.Curran Asso-ciates Inc.2011:2546-2554. [20]HUTTER F,HOOS H H,LEYTON-BROWN K.SequentialModel-based Optimization for General Algorithm Configuration[C]//Learning and Intelligent Optimization:5th International Conference,LION 5,Rome,Italy,January 17-21,2011.Selected Papers 5.Berlin,Heidelberg:Springer,2011:507-523. [21]JAMIESON K,TALWALKAR A.Non-stochastic Best ArmIdentification and Hyperparameter Optimization[C]//Artificial Intelligence and Statistics.PMLR,2016:240-248. [22]LI L,JAMIESON K,DESALVO G,et al.Hyperband:A Novel Bandit-based Approach to Hyperparameter Optimization[J].The Journal of Machine Learning Research,2017,18(1):6765-6816. [23]FALKNER S,KLEIN A,HUTTER F.BOHB:Robust and Efficient Hyperparameter Optimization at Scale[C]//International Conference on Machine Learning.PMLR,2018:1437-1446. [24]MITCHELL M.An Introduction to Genetic Algorithms[M].MIT press,1998. [25]KENNEDY J,EBERHART R.Particle Swarm Optimization[C]//Proceedings of ICNN’95 International Conference on Neural Networks.IEEE,1995,4:1942-1948. [26]HANSEN N,OSTERMEIER A.Completely Derandomized Self-adaptation in Evolution Strategies[J].Evolutionary Computation,2001,9(2):159-195. [27]WU J,CHEN S P,LIU X Y.Efficient Hyperparameter Optimization through Model-based Reinforcement Learning[J].Neurocomputing,2020,409:381-393. [28]LIU X,WU J,CHEN S.A Context-based Meta-reinforcementLearning Approach to Efficient Hyperparameter Optimization[J].Neurocomputing,2022,478:89-103. [29]WU J,LIU X,CHEN S.Hyperparameter Optimization through Context-based Meta-reinforcement Learning with Task-aware Representation[J].Knowledge-Based Systems,2023,260:110160. [30]YANG L,SHAMI A.On Hyperparameter Optimization of Machine Learning Algorithms:Theory and Practice[J].Neurocomputing,2020,415:295-316. [31]LUO G.A Review of Automatic Selection Methods for Machine Learning Algorithms and Hyper-parameter Values[J].Network Modeling Analysis in Health Informatics and Bioinformatics,2016,5:1-16. [32]LORENZO P R,NALEPA J,KAWULOK M,et al.ParticleSwarm Optimization for Hyper-parameter Selection in Deep Neural Networks[C]//Proceedings of the Genetic and Evolutionary Computation Conference.2017:481-488. [33]WITT C.Worst-case and Average-case Approximations by Simple Randomized Search Heuristics[C]//Annual Symposium on Theoretical Aspects of Computer Science.Berlin,Heidelberg:Springer,2005:44-56. [34]LIU C,YIN S Q,ZHANG M,et al.An Improved Grid Search Algorithm for Parameters Optimization on SVM[J].Applied Mechanics and Materials,2014,644:2216-2219. [35]SUN Y,DING S,ZHANG Z,et al.An Improved Grid SearchAlgorithm to Optimize SVR for Prediction[J].Soft Computing,2021,25:5633-5644. [36]NAYEBI A,MUNTEANU A,POLOCZEK M.A Framework for Bayesian Optimization in Embedded Subspaces[C]//International Conference on Machine Learning.PMLR,2019:4752-4761. [37]KIRSCHNER J,MUTNY M,HILLER N,et al.Adaptive andSafe Bayesian Optimization in High Dimensions Via One-dimensional Subspaces[C]//International Conference on Machine Learning.PMLR,2019:3429-3438. [38]LIU Q,WANG D.Stein Variational Gradient Descent:A Gene-ral Purpose Bayesian Inference Algorithm[J].Advances in Neural Information Processing Systems,2016,29:2378-2386. [39]GONG C,PENG J,LIU Q.Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization[C]//International Conference on Machine Learning.PMLR,2019:2347-2356. [40]WANG Z,LI C,JEGELKA S,et al.Batched High-Dimensional Bayesian Optimization Via Structural Kernel Learning[C]//International Conference on Machine Learning.PMLR,2017:3656-3664. [41]ROLLAND P,SCARLETT J,BOGUNOVIC I,et al.High-Dimensional Bayesian Optimization Via Additive Models with Overlapping Groups[C]//International Conference on Artificial Intelligence and Statistics.PMLR,2018:298-307. [42]CONTAL E,BUFFONI D,ROBICQUET A,et al.ParallelGaussian Process Optimization with Upper Confidence Bound and Pure Exploration[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin,Heidelberg:Springer,2013:225-240. [43]WANG Z,GEHRING C,KOHLI P,et al.Batched Large-scale Bayesian Optimization in High-dimensional Spaces[C]//International Conference on Artificial Intelligence and Statistics.PMLR,2018:745-754. [44]SWERSKY K,SNOEK J,ADAMS R P.Multi-task BayesianOptimization[J].Advances in Neural Information Processing Systems,2013,26:2004-2012. [45]PEARCE M,BRANKE J.Continuous Multi-Task Bayesian Optimisation with Correlation[J].European Journal of Operational Research,2018,270(3):1074-1085. [46]CHOWDHURY S R,GOPALAN A.No-regret Algorithms forMulti-task Bayesian Optimization[C]//International Conference on Artificial Intelligence and Statistics.PMLR,2021:1873-1881. [47]GONZALEZ J,DAI Z,HENNIG P,et al.Batch Bayesian Optimization Via Local Penalization[C]//Artificial Intelligence and Statistics.PMLR,2016:648-657. [48]GARRIDO-MERCHAN E C,HERNANDEZ-LOBATO D.Dealing with Categorical and Integer-valued Variables in Baye-sian Optimization with Gaussian Processes[J].Neurocomputing,2020,380:20-35. [49]FEURER M,SPRINGENBERG J,HUTTER F.InitializingBayesian Hyperparameter Optimization Via Meta-learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2015. [50]ROTHFUSS J,KOENIG C,RUPENYAN A,et al.Meta-lear-ning Priors for Safe Bayesian Optimization[C]//Conference on Robot Learning.PMLR,2023:237-265. [51]LAN G,TOMCZAK J M,ROIJERS D M,et al.Time Efficiency in Optimization with a Bayesian-evolutionary Algorithm[J].Swarm and Evolutionary Computation,2022,69:100970. [52]HENSMAN J,FUSI N,LAWRENCE N D.Gaussian processesfor Big data[C]//Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence.Arlington,Virginia,USA:AUAI Press,2013:282-290. [53]ELSHAWI R,MAHER M,SAKR S.Automated MachineLearning:State-of-the-art and Open Challenges[J].arXiv:1906.02287,2019. [54]FERNANDEZ-GODINO M G,PARK C,KIM N H,et al.Review of Multi-fidelity Models[J].arXiv:1609.07196,2016. [55]LI L,JAMIESON K,ROSTAMIZADEH A,et al.A System for Massively Parallel Hyperparameter Tuning[J].Proceedings of Machine Learning and Systems,2020,2:230-246. [56]SCHMUCKER R,DONINI M,ZAFAR M B,et al.Multi-objective Asynchronous Successive Halving[J].arXiv:2106.12639,2021. [57]AWAD N,MALLIK N,HUTTER F.Dehb:Evolutionary Hy-perband for Scalable,Robust and Efficient Hyperparameter Optimization[J].arXiv:2105.09821,2021. [58]AWAD N,SHARMA A,HUTTER F.MO-DEHB:Evolutio-nary-based Hyperband for Multi-Objective Optimization[J].arXiv:2305.04502,2023. [59]STORN R,PRICE K.Differential Evolution:A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces[J].Journal of Global Optimization,1997,11:341-359. [60]JIA H,SUN K,ZHANG W,et al.An Enhanced Chimp Optimization Algorithm for Continuous Optimization Domains[J].Complexand Intelligent Systems,2022,8(1):65-82. [61]ZHAO W,WANG L,MIRJALILI S.Artificial HummingbirdAlgorithm:A New Bio-inspired Optimizer with Its Engineering Applications[J].Computer Methods in Applied Mechanics and Engineering,2022,388:114194. [62]DENG W,SHANG S,CAI X,et al.An Improved DifferentialEvolution Algorithm and Its Application in Optimization Pro-blem[J].Soft Computing,2021,25:5277-5298. [63]NOMURA M,WATANABE S,AKIMOTO Y,et al.WarmStarting CMA-ES for Hyperparameter Optimization[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:9188-9196. [64]LESSMANN S,STAHLBOCK R,CRONE S F.Optimizing Hyperparameters of Support Vector Machines by Genetic Algorithms[C]//ICAI.2005. [65]LOBO F G,GOLDBERG D E,PELIKAN M.Time Complexity of Genetic Algorithms on Exponentially Scaled Problems[C]//Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation.2000:151-158. [66]YAN X H,HE F Z,CHEN Y L.A Novel Hardware/SoftwarePartitioning Method Based on Position Disturbed Particle Swarm Optimization with Invasive Weed Optimization[J].Journal of Computer Science and Technology,2017,32:340-355. [67]AHANDANI M A,ALAVI-RAD H.Opposition-based Learning in the Shuffled Differential Evolution Algorithm[J].Soft Computing,2012,16(8):1303-1337. [68]QIAO S.Study and Application of CMA-ES Algorithm Based on Cloud Mode[D].Taiyuan:Taiyuan University of Technology,2015. [69]BEYER H G,SENDHOFF B.Covariance Matrix AdaptationRevisited-the CMSA Evolution Strategy[C]//International Conference on Parallel Problem Solving from Nature.Berlin,Heidelberg:Springer,2008:123-132. [70]PEDREGOSA F,VARIQUAUX G,GRAMFORT A,et al.Scikit-learn:Machine Learning in Python[J].The Journal of Machine Learning Research,2011,12:2825-2830. [71]SCHWAIGHOFER A,TRESP V.Transductive and InductiveMethods for Approximate Gaussian Process Regression[J].Advances in Neural Information Processing Systems,2002,15(3):953-960. [72]YEH I C,LIEN C.The Comparisons of Data Mining Techniques forPredictive Accuracy of Probability of Default of Credit Card Clients[J].Expert Systems with Applications,2009,36(2):2473-2480. |
[1] | ZAHO Peng, ZHOU Jiantao, ZHAO Daming. Cloud Computing Load Prediction Method Based on Hybrid Model of CEEMDAN-ConvLSTM [J]. Computer Science, 2023, 50(6A): 220300272-9. |
[2] | HU Zhongyuan, XUE Yu, ZHA Jiajie. Survey on Evolutionary Recurrent Neural Networks [J]. Computer Science, 2023, 50(3): 254-265. |
[3] | LI Ya-ru, ZHANG Yu-lai, WANG Jia-chen. Survey on Bayesian Optimization Methods for Hyper-parameter Tuning [J]. Computer Science, 2022, 49(6A): 86-92. |
|