Computer Science ›› 2024, Vol. 51 ›› Issue (9): 319-330.doi: 10.11896/jsjkx.240200036
• Computer Network • Previous Articles Next Articles
ZHOU Wenhui, PENG Qinghua, XIE Lei
CLC Number:
[1]SHAO Z,CAI J J,WANG Z Y,et al.Big data analysis and processing of surveillance video for intelligent surveillance cameras [J].Journal of Electronics and Information Technology,2017,39(5):1116-1122. [2]WANG N.Surveillance camera visualization management sys-tem in smart grid [J].Journal of North China Institute of Water Resources and Hydropower,2011,32(1):111-113. [3]SMOLYANSKIY N,KAMENEV A,SMITH J,et al.Toward low-flying autonomous MAV trail navigation using deep neural networks for environmental awareness[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2017:4241-4247. [4]KOURIS A,BOUGANIS C S.Learning to fly by myself:A self-supervised cnn-based approach for autonomous navigation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2018:1-9. [5]GEORGANAS E,AVANCHA S,BANERJEE K,et al.Anato-my of high-performance deep learning convolutions on simd architectures[C]//International Conference for High Performance Computing,Networking,Storage and Analysis.IEEE,2018:830-841. [6]JOUPPI N P,YOUNG C,PATIL N,et al.In-datacenter per-formance analysis of a tensor processing unit[C]//Proceedings of the 44th Annual International Symposium on Computer Architecture.2017:1-12. [7]ZHANG M,WANG F,LIU J.Casva:Configuration-adaptivestreaming for live video analytics[C]//IEEE Conference on Computer Communications.IEEE,2022:2168-2177. [8]SINGH A,CHATTERJEE K.Cloud security issues and challenges:A survey[J].Journal of Network and Computer Applications,2017,79:88-115. [9]RAN X,CHEN H,ZHU X,et al.Deepdecision:A mobile deeplearning framework for edge video analytics[C]//IEEE Confe-rence on Computer Communications.IEEE,2018:1421-1429. [10]HAN S,SHEN H,PHILIPOSE M,et al.Mcdnn:An approximation-based execution framework for deep stream processing under resource constraints[C]//Proceedings of the 14th Annual International Conference on Mobile Systems,Applications,and Services.2016:123-136. [11]ZHANG H,ANANTHANARAYANAN G,BODIK P,et al.Live video analytics at scale with approximation and {Delay-To-lerance}[C]//14th USENIX Symposium on Networked Systems Design and Implementation(NSDI 17).2017:377-392. [12]PAKHA C,CHOWDHERY A,JIANG J.Reinventing videostreaming for distributed vision analytics[C]//10th USENIX Workshop on Hot Topics in Cloud Computing(HotCloud 18).2018. [13]WANG C Y,BOCHKOVSKIY A,LIAO H Y M.Scaled-yolov4:Scaling cross stage partial network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13029-13038. [14]CHEN Q,WANG Y,YANG T,et al.You only look one-levelfeature[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13039-13048. [15]LI X,WANG W,HU X,et al.Generalized focal loss v2:Lear-ning reliable localization quality estimation for dense object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11632-11641. [16]FAN M,LAI S,HUANG J,et al.Rethinking bisenet for real-time semantic segmentation[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:9716-9725. [17]YU C,ZHOU Q,LI J,et al.Foundation Model Drives Weakly Incremental Learning for Semantic Segmentation[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:23685-23694. [18]CAI J,XU M,LI W,et al.Memot:Multi-object tracking withmemory[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:8090-8100. [19]BEWLEY A,GE Z,OTT L,et al.Simple online and realtimetracking[C]//2016 IEEE International Conference on Image Processing(ICIP).IEEE,2016:3464-3468. [20]WANDT B,RUDOLPH M,ZELL P,et al.Canonpose:Self-su-pervised monocular 3d human pose estimation in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13294-13304. [21]ALMEIDA M,LASKARIDIS S,LEONTIADIS I,et al.Em-Bench:Quantifying performance variations of deep neural networks across modern commodity devices[C]//The 3rd International Workshop on Deep Learning for Mobile Systems and Applications.2019:1-6. [22]SHEN H,CHEN L,JIN Y,et al.Nexus:A GPU cluster engine for accelerating DNN-based video analysis[C]//Proceedings of the 27th ACM Symposium on Operating Systems Principles.2019:322-337. [23]JIANG J,ANANTHANARAYANAN G,BODIK P,et al.Chameleon:scalable adaptation of video analytics[C]//Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication.2018:253-266. [24]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//14th European Conference,Amsterdam,The Netherlands,October 11-14,2016,Proceedings,Part I 14.Springer International Publishing,2016:21-37. [25]ZHAO H,QI X,SHEN X,et al.Icnet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:405-420. [26]HE Y,PAN Z,LI L,et al.Real-time vehicle detection fromshort-range aerial image with compressed mobilenet[C]//2019 International Conference on Robotics and Automation(ICRA).IEEE,2019:8339-8345. [27]JIANG A H,WONG D L K,CANEL C,et al.Mainstream:Dynamic {Stem-Sharing} for {Multi-Tenant} Video Processing[C]//2018 USENIX Annual Technical Conference(USENIX ATC 18).2018:29-42. [28]MATSUBARA Y,BAIDYA S,CALLEGARO D,et al.Distilled split deep neural networks for edge-assisted real-time systems[C]//Proceedings of the 2019 Workshop on Hot Topics in Vi-deo Analytics and Intelligent Edges.2019:21-26. [29]RA M R,SHETH A,MUMMERT L,et al.Odessa:enabling in-teractive perception applications on mobile devices[C]//Proceedings of the 9th International Conference on Mobile Systems,Applications,and Services.2011:43-56. [30]WANG Y,WANG W,ZHANG J,et al.Bridging the {Edge-Cloud} Barrier for Real-time Advanced Vision Analytics[C]//11th USENIX Workshop on Hot Topics in Cloud Computing(HotCloud 19).2019. [31]LI Y,PADMANABHAN A,ZHAO P,et al.Reducto:On-ca-mera filtering for resource-efficient real-time video analytics[C]//Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications,Technologies,Architectures,and Protocols for Computer Communication.2020:359-376. [32]CHEN T Y H,RAVINDRANATH L,DENG S,et al.Glimpse:Continuous,real-time object recognition on mobile devices[C]//Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems.2015:155-168. [33]HUANG T,ZHOU C,ZHANG R X,et al.Comyco:Quality-aware adaptive video streaming via imitation learning[C]//Proceedings of the 27th ACM International Conference on Multi-media.2019:429-437. [34]WANG Z,BAPST V,HEESS N,et al.Sample efficient actor-critic with experience replay[J].arXiv:1611.01224,2016. [35]HAARNOJA T,ZHOU A,ABBEEL P,et al.Soft Actor-Critic:Off-Policy Maximum Entropy Deep Reinforcement[C]//Proceedings of the 35th International Conference on Machine Learning,Stockholm,Sweden.2018:1861-1870. |
[1] | WANG Tianjiu, LIU Quan, WU Lan. Offline Reinforcement Learning Algorithm for Conservative Q-learning Based on Uncertainty Weight [J]. Computer Science, 2024, 51(9): 265-272. |
[2] | GAO Yuzhao, NIE Yiming. Survey of Multi-agent Deep Reinforcement Learning Based on Value Function Factorization [J]. Computer Science, 2024, 51(6A): 230300170-9. |
[3] | LI Danyang, WU Liangji, LIU Hui, JIANG Jingqing. Deep Reinforcement Learning Based Thermal Awareness Energy Consumption OptimizationMethod for Data Centers [J]. Computer Science, 2024, 51(6A): 230500109-8. |
[4] | LIU Dong, WANG Ruijin, ZHAO Yanjun, MA Chaoyang, YUAN Haonan. Study on Key Platform of Edge Computing Server Based on ARM Architecture [J]. Computer Science, 2024, 51(6A): 230600119-8. |
[5] | WANG Zhongxiao, PENG Qinglan, SUN Ruoxiao, XU Xifeng, ZHENG Wanbo, XIA Yunni. Delay and Energy-aware Task Offloading Approach for Orbit Edge Computing [J]. Computer Science, 2024, 51(6A): 240100188-9. |
[6] | LIANG Jingyu, MA Bowen, HUANG Jiwei. Reliability-aware VNF Instance Placement in Edge Computing [J]. Computer Science, 2024, 51(6A): 230500064-6. |
[7] | WANG Shuanqi, ZHAO Jianxin, LIU Chi, WU Wei, LIU Zhao. Fuzz Testing Method of Binary Code Based on Deep Reinforcement Learning [J]. Computer Science, 2024, 51(6A): 230800078-7. |
[8] | SUN Jianming, ZHAO Mengxin. Survey of Application of Differential Privacy in Edge Computing [J]. Computer Science, 2024, 51(6A): 230700089-9. |
[9] | XUE Jianbin, DOU Jun, WANG Tao, MA Yuling. Scheme for Maximizing Secure Communication Capacity in UAV-assisted Edge Computing Networks [J]. Computer Science, 2024, 51(6A): 230800032-7. |
[10] | LI Jie, WANG Yao, CHEN Kansong, XU Lijun. Adaptive Sparse Sensor Network Target Coverage Algorithm Based on Edge Computing [J]. Computer Science, 2024, 51(6): 364-374. |
[11] | YANG Xiuwen, CUI Yunhe, QIAN Qing, GUO Chun, SHEN Guowei. COURIER:Edge Computing Task Scheduling and Offloading Method Based on Non-preemptivePriorities Queuing and Prioritized Experience Replay DRL [J]. Computer Science, 2024, 51(5): 293-305. |
[12] | WANG Zhihong, WANG Gaocai, ZHAO Qifei. Multi-objective Optimization of D2D Collaborative MEC Based on Improved NSGA-III [J]. Computer Science, 2024, 51(3): 280-288. |
[13] | WANG Xinlong, LIN Bing, CHEN Xing. Computation Offloading with Wardrop Routing Game in Multi-UAV-aided MEC Environment [J]. Computer Science, 2024, 51(3): 309-316. |
[14] | LI Junwei, LIU Quan, XU Yapeng. Option-Critic Algorithm Based on Mutual Information Optimization [J]. Computer Science, 2024, 51(2): 252-258. |
[15] | SHI Dianxi, PENG Yingxuan, YANG Huanhuan, OUYANG Qianying, ZHANG Yuhui, HAO Feng. DQN-based Multi-agent Motion Planning Method with Deep Reinforcement Learning [J]. Computer Science, 2024, 51(2): 268-277. |
|