Computer Science ›› 2025, Vol. 52 ›› Issue (6): 397-404.doi: 10.11896/jsjkx.240400133
• Information Security • Previous Articles Next Articles
SUN Ruijie1, LI Peng1,2,3, ZHU Feng1
CLC Number:
[1]SHANG Y,LI P,ZHU F,et al.Overview of IoT traffic attack detection technology based on fuzzy logic[J].Computer Science,2024,51(3):3-13. [2]ANITHA V,KUMAR C G N,KUCHIPUDI R,et al.Cybersecurity in Internet of Things Networks using Deep Learning Models[C]//2023 International Conference on Sustainable Computing and Data Communication Systems(ICSCDS).IEEE,2023:1090-1095. [3]DIRO A,CHILAMKURTI N,NGUYEN V D,et al.A comprehensive study of anomaly detection schemes in IoT networks using machine learning algorithms[J].Sensors,2021,21(24):8320. [4]DEORANKAR A V,THAKARE S S.Survey on anomaly detec-tion of(iot)-internet of things cyberattacks using machine lear-ning[C]//2020 Fourth International Conference on Computing Methodologies and Communication(ICCMC).IEEE,2020:115-117. [5]GU Z,WANG Z,GUO J,et al.5G power failure terminal threat detection based on atomized zero-trust component[J].Computer Engineering,2023,49(2):161-168. [6]DING D,SAVI M,SIRACUSA D.Tracking normalized network traffic entropy to detect DDoS attacks in P4[J].IEEE Transactions on Dependable and Secure Computing,2021,19(6):4019-4031. [7]VUGRIN E D,HANSON S,CRUZ J,et al.Experimental Validation of a Command and Control Traffic Detection Model[J].IEEE Transactions on Dependable and Secure Computing,2023,21(3):1084-1097. [8]HAJI S H,AMEEN S Y.Attack and anomaly detection in IoTnetworks using machine learning techniques:A review[J].Asian Journal of Research in Computer Science,2021,9(2):30-46. [9]XIAO X,XIAO W,LI R,et al.EBSNN:Extended byte segment neural network for network traffic classification[J].IEEE Transactions on Dependable and Secure Computing,2021,19(5):3521-3538. [10]QIU X,ZHANG L,REN Y,et al.Ensemble deep learning forregression and time series forecasting[C]//2014 IEEE Sympo-sium on Computational Intelligence in Ensemble learning(CIEL).IEEE,2014:1-6. [11]XIONG W,LEGRAND E,ÅBERG O,et al.Cyber security threatmodeling based on the MITRE Enterprise ATT&CK Matrix[J].Software and Systems Modeling,2022,21(1):157-177. [12]AL-SHAER R,SPRING J M,CHRISTOU E.Learning the associations of mitre att & ck adversarial techniques[C]//2020 IEEE Conference on Communications and Network Security(CNS).IEEE,2020:1-9. [13]GEORGIADOU A,MOUZAKITIS S,ASKOUNIS D.Assessing mitre att&ck risk using a cyber-security culture framework[J].Sensors,2021,21(9):3267. [14]KWON R,ASHLEY T,CASTLEBERRY J,et al.Cyber threatdictionary using mitre att&ck matrix and nist cybersecurity framework mapping[C]//2020 Resilience Week(RWS).IEEE,2020:106-112. [15]HAQUE M A,SHETTY S,KAMHOUA C A,et al.Adversarial Technique Validation & Defense Selection Using Attack Graph & ATT&CK Matrix[C]//2023 International Conference on Computing,Networking and Communications(ICNC).IEEE,2023:181-187. [16]NOUR M.The UNSW-NB15 Dataset [EB/OL].https://paperswithcode.com/dataset/unsw-nb15. |
[1] | CHENG Kai, TANG Weidong, TAN Lintao, CHEN Jia, LI Xin. Network Attack Mitigation Framework Based on Normalized Processing and TrafficLLM [J]. Computer Science, 2025, 52(6A): 250200080-9. |
[2] | LI Yuanbo, HU Hongchao, YANG Xiaohan, GUO Wei, LIU Wenyan. Intrusion Tolerance Scheduling Algorithm for Microservice Workflow Based on Deep Reinforcement Learning [J]. Computer Science, 2025, 52(5): 375-383. |
[3] | SUI Jiaqi, HU Hongchao, SHI Xin, ZHOU Dacheng, CHEN Shangyu. Tor Network Path Selection Algorithm Based on Similarity Perception [J]. Computer Science, 2025, 52(3): 391-399. |
[4] | TANG Ying, WANG Baohui. Study on SSL/TLS Encrypted Malicious Traffic Detection Algorithm Based on Graph Neural Networks [J]. Computer Science, 2024, 51(9): 365-370. |
[5] | CHEN Liang, LI Zhihua. Abnormal Traffic Detection Method for Multi-stage Attacks of Internet of Things Botnets [J]. Computer Science, 2024, 51(8): 379-386. |
[6] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
[7] | TAN Jingqi, XUE Lingyan, HUANG Haiping, CHEN Long, LI Yixuan. Data Security Management Scheme Based on Editable Medical Consortium Chain [J]. Computer Science, 2024, 51(6A): 240400056-8. |
[8] | LIU Daoqing, HU Hongchao, HUO Shumin. N-variant Architecture for Container Runtime Security Threats [J]. Computer Science, 2024, 51(6): 399-408. |
[9] | WU Fengyuan, LIU Ming, YIN Xiaokang, CAI Ruijie, LIU Shengli. Remote Access Trojan Traffic Detection Based on Fusion Sequences [J]. Computer Science, 2024, 51(6): 434-442. |
[10] | WANG Yu, WANG Zuchao, PAN Rui. Survey of DGA Domain Name Detection Based on Character Feature [J]. Computer Science, 2023, 50(8): 251-259. |
[11] | WANG Qingyu, WANG Hairui, ZHU Guifu, MENG Shunjian. Study on SQL Injection Detection Based on FlexUDA Model [J]. Computer Science, 2023, 50(6A): 220600172-6. |
[12] | WEI Tao, LI Zhihua, WANG Changjie, CHENG Shunhang. Cybersecurity Threat Intelligence Mining Algorithm for Open Source Heterogeneous Data [J]. Computer Science, 2023, 50(6): 330-337. |
[13] | BAI Zhixu, WANG Hengjun, GUO Kexiang. Adversarial Examples Generation Method Based on Image Color Random Transformation [J]. Computer Science, 2023, 50(4): 88-95. |
[14] | LIU Wen-he, JIA Hong-yong, PAN Yun-fei. Mimic Firewall Executor Scheduling Algorithm Based on Executor Defense Ability [J]. Computer Science, 2022, 49(11A): 211200296-6. |
[15] | LI Jia-rui, LING Xiao-bo, LI Chen-xi, LI Zi-mu, YANG Jia-hai, ZHANG Lei, WU Cheng-nan. Dynamic Network Security Analysis Based on Bayesian Attack Graphs [J]. Computer Science, 2022, 49(3): 62-69. |
|