Computer Science ›› 2025, Vol. 52 ›› Issue (9): 282-293.doi: 10.11896/jsjkx.240700201
• Artificial Intelligence • Previous Articles Next Articles
CAI Qihang, XU Bin, DONG Xiaodi
CLC Number:
[1]XIONG C Y,POWER R,CALLAN J.Explicit semantic ranking for academic search via knowledge graph embedding[C]//Proceedings of the 26th International Conference on World Wide Web.ACM,2017:1271-1279. [2]SAXENA A,TRIPATHI A,TALUKDAR P.Improving multi-hop question answering overknowledge graphs using knowledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL,2020:4498-4507. [3]WANG H W,ZHANG F Z,ZHANG M D,et al.Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining.New York:ACM,2019:968-977. [4]BOLLACKER K,EVANS C,PARITOSH P,et al.FreeBase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.ACM,2008:1247-1250. [5]VRANDEČIĆ D,KRÖTZSCH M.Wikidata:a free collaborative knowledgebase[J].Communications of the ACM,2014,57(10):78-85. [6]LEHMANN J,ISELE R,JAKBO M,et al.DBpedia-a large-scale,multilingual knowledge base extracted from Wikipedia[J].Semantic Web,2015,6(2):167-195. [7]SUCHANEK F M,KASNECI G,WEIKUM G.Yago:a core of semantic knowledge[C]//Proceedings of the 16th International World Wide Web Conference.New York:ACM,2007:697-706. [8]DONG X,GABRILOVICH E,HEITZ G,et al.Knowledgevault:a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SI-GKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2014:601-610. [9]WEST R,GABRILOVICH E,MURPHY K,et al.Knowledge base completion via search-based question answering[C]//Proceedings of the 23rd International Conference on World Wide Web.ACM,2014:515-526. [10]YAO L,MAO C S,LUO Y.KG-BERT:BERT for knowledge graph completion[J].arXiv:1909.03193,2019. [11]LYU X,LIN Y K,CAO Y X,et al.Do pre-trained models benefit knowledge graph completion? a reliable evaluation and a reasonable approach[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL,2022:3570-3581. [12]CHOI B,JANG D,KO Y.MEM-KGC:masked entity model for knowledge graph completion with pre-trained language model[J].IEEE Access,2021,9:132025-132032. [13]LIU X,ZHENG Y N,DU Z X,et al.Gpt understands,too[J].arXiv:2103.10385,2021. [14]CHEN C,WANG Y F,SUN A X,et al.Dipping PLMs sauce:bridging structure and text for effectiveknowledge graph completion via conditional soft prompting[C]//Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL,2023:11489-11503. [15]LIU X D,HE P C,CHEN W Z,et al.Multi-task deep neural networks for natural language understanding[C]//Proceedings of the 57th Annual Meeting of the Association for ComputationalLinguistics.Stroudsburg:ACL,2019:4487-4496. [16]OPENAI,ACHIAM J,ADLER S,et al.GPT-4 technical report[J].arXiv:2303.08774,2023. [17]TOUVRON H,LAVRIL T,IZACARD G,et al.LLaMA:open and efficient foundation language models[J].arXiv:2302.13971,2023. [18]ZENG A H,LIU X,DU Z X,et al.GLM-130B:an open bilingual pre-trained model[J].arXiv:2210.02414,2022. [19]ZHAO W X,ZHOU K,LI J Y,et al.A survey of large language models[J].arXiv:2303.18223,2023. [20]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information ProcessingSystems.2013:2787-2795. [21]YANY B,HE X.Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 2015 International Conference on Learning Representations.2015:1412-1420. [22]SUN Z Q,DENG Z H,NIE J Y,et al.RotatE:knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 7th International Conference on Learning Representations.2019:1-18. [23]DETTMERS T,MINERVINI P,STENETORP P,et al.Convolutional 2d knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence,the 30th Innovative Applications of Artificial Intelligence,and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence.Menlo Park:AAAI,2018:1811-1818. [24]NGUYEN D Q,NGUYEN T D,NEUYEN D Q,et al.A novel embedding model for knowledge base completion based on convolutional neural network[J].arXiv:1712.02121,2017. [25]NATHANI D,CHAUHAN J,SHARMA C,et al.Learning attention-based embeddings for relation prediction in knowledge graphs[J].arXiv:1906.01195,2019. [26]DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg:ACL,2019:4171-4186. [27]JU J H,YANY D Q,LIU J P.Commonsense knowledge base completion with relational graph attention network and pre-trained language model[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management Association for Computing Machinery.New York:ACM,2022:4104-4108. [28]SUN W,LI Y F,YAO J F,et al.Combining structure embedding and text semantics for efficient knowledge graph completion[C]//Proceedings of the 35th International Conference on Software Engineering and Knowledge Engineering.2023:317-322. [29]ZHU Y Q,WANG X H,CHEN J,et al.Llms for knowledge graph construction and reasoning:recent capabilities and future opportunities[J].arXiv:2305.13168,2023. [30]YAO L,PENG J Z,MAO C S,et al.Exploring large language models for knowledge graph completion[J].arXiv:2308.13916,2023. [31]WEI Y B,HUANG Q S,ZHANG Y,et al.KICGPT:large language model with knowledge in context for knowledge graph completion[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.Stroudsburg:ACL,2023:8667-8683. [32]AKRAMI F,SAEEF M S,ZHANG Q,et al.Realistic re-evaluation of knowledge graph completion methods:an experimental study[J].arXiv:2003.08001,2020. [33]BALAŽEVIC I,ALLEN C,HOSPEDALES T.Tucker:tensor factorization for knowledge graph completion[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the International Joint Conference on Natural Language Processing.2019:5185-5194. [34]VASHISHTH S,SANYAL S,NITIN N,et al.Compositionbased multi-relational graph convolutional networks[C]//Proceedings of the 8th International Conference on Learning Representations.2020. [35]ZHU Y L,LIU J T,RAO Z Y,et al.Knowledge Reasoning Model Combining HousE with Attention Mechanism[J].Computer Science,2024,51(S1):147-154. [36]HU B H,ZHANG J P,CHEN H C.Knowledge Graph Completion Algorithm Based on Generative Adversarial Network and Positiveand Unlabeled Learning[J].Computer Science,2024,51(1):310-315. [37]KIM B,HONG T,KO Y,et al.Multi-task learning for knowledge graph completion with pre-trained language models[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:1737-1743. [38]CHEN C,WANG Y,LI B,et al.Knowledge is flat:a seq2seqgenerative framework for various knowledge graph completion[C]//Proceedings of the 29th International Conference on Computational Linguistics.Stroudsburg:ACL,2022:4005-4017. [39]LIU X Y,WANG Z X,SUN Y,et al.ISA-KGC:integrated semantics-structure analysis in knowledge graph completion[J].IEEE Access,2024,12:57250-57260. |
[1] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
[2] | ZHONG Boyang, RUAN Tong, ZHANG Weiyan, LIU Jingping. Collaboration of Large and Small Language Models with Iterative Reflection Framework for Clinical Note Summarization [J]. Computer Science, 2025, 52(9): 294-302. |
[3] | CHENG Zhangtao, HUANG Haoran, XUE He, LIU Leyuan, ZHONG Ting, ZHOU Fan. Event Causality Identification Model Based on Prompt Learning and Hypergraph [J]. Computer Science, 2025, 52(9): 303-312. |
[4] | WANG Limei, HAN Linrui, DU Zuwei, ZHENG Ri, SHI Jianzhong, LIU Yiqun. Privacy Policy Compliance Detection Method for Mobile Application Based on Large LanguageModel [J]. Computer Science, 2025, 52(8): 1-16. |
[5] | WANG Dongsheng. Multi-defendant Legal Judgment Prediction with Multi-turn LLM and Criminal Knowledge Graph [J]. Computer Science, 2025, 52(8): 308-316. |
[6] | HONG Xinran, MA Jun, WANG Jing, ZHANG Chuang, YU Jie, LI Xiaoling, ZHANG Xueyan, YANG Yajing. Survey on Research of Compatibility Issues in Operating System for Software Ecology Evolution [J]. Computer Science, 2025, 52(7): 1-12. |
[7] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
[8] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
[9] | LI Maolin, LIN Jiajie, YANG Zhenguo. Confidence-guided Prompt Learning for Multimodal Aspect-level Sentiment Analysis [J]. Computer Science, 2025, 52(7): 241-247. |
[10] | CHEN Jinyin, XI Changkun, ZHENG Haibin, GAO Ming, ZHANG Tianxin. Survey of Security Research on Multimodal Large Language Models [J]. Computer Science, 2025, 52(7): 315-341. |
[11] | TU Ji, XIAO Wendong, TU Wenji, LI Lijian. Application of Large Language Models in Medical Education:Current Situation,Challenges and Future [J]. Computer Science, 2025, 52(6A): 240400121-6. |
[12] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
[13] | ZOU Rui, YANG Jian, ZHANG Kai. Low-resource Vietnamese Speech Synthesis Based on Phoneme Large Language Model andDiffusion Model [J]. Computer Science, 2025, 52(6A): 240700138-6. |
[14] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[15] | BAI Yuntian, HAO Wenning, JIN Dawei. Study on Open-domain Question Answering Methods Based on Retrieval-augmented Generation [J]. Computer Science, 2025, 52(6A): 240800141-7. |
|