Computer Science ›› 2025, Vol. 52 ›› Issue (7): 353-362.doi: 10.11896/jsjkx.240800079
• Information Security • Previous Articles Next Articles
DING Bowen, LU Tianliang, PENG Shufan, GENG Haoqi, YANG Gang
CLC Number:
[1]KINGMA D P,WELLING M.Auto-encoding Variational Bayes[J].arXiv:1312.6114,2013. [2]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative Adversarial Networks[J].Communications of the ACM,2020,63(11):139-144. [3]HO J,JAIN A,ABBEEL P.Denoising Diffusion ProbabilisticModels[J].Advances in Neural Information Processing Systems,2020,33:6840-6851. [4]ZHANG Y W,CAI M C,CHEN Y H,et al.Deepfake Detection Method Integrating Multiple Parameter Efficient Fine-tuning Techniques[J].Journal of Frontiers of Computer Science and Technology,2024,18(12):3335-3347. [5]HE Y,GAN B,CHEN S,et al.Forgerynet:A Versatile Benchmark for Comprehensive Forgery Analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:4360-4369. [6]ROSSLER A,COZZOLINO D,VERDOLIVA L,et al.Facefo-rensics++:Learning to Detect Manipulated Facial Images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1-11. [7]DANG H,LIUF,STEHOUWER J,et al.On the Detection of Digital Face Manipulation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition.2020:5781-5790. [8]WANG J,WU Z,OUYANG W,et al.M2tr:Multi-modalmulti-scale Transformers for Deepfake Detection[C]//Proceedings of the 2022 International Conference on Multimedia Retrieval.2022:615-623. [9]ZHOU Y,FAN B,ATREY P K,et al.Exposing Deepfakes Using Dual-channel Network with Multi-axis Attention and Frequency Analysis[C]//Proceedings of the 2023 ACM Workshop on Information Hiding and Multimedia Security.2023:169-174. [10]TIAN C,LUO Z,SHI G,et al.Frequency-aware AttentionalFeature Fusion for Deepfake Detection[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2023:1-5. [11]ZHAO Z J,FAN Z F,DING B,et al.Deepfake Detection Based on Incremental Learning[J].Frontiers of Data & Computing,2023,5(6):42-57. [12]HENDRYCKS D,GIMPEL K.GaussianError Linear Units(GELUs)[J].aXiv:1606.08415,2016. [13]KARRAS T,LAINE S,AILA T.AStyle-based Generator Ar-chitecture for Generative Adversarial Networks[C]// Procee- dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4401-4410. [14]LIU Z,LUO P,WANG X,et al.DeepLearning Face Attributes in the Wild[C]//Proceedings of the IEEE International Confe- rence on Computer Vision.2015:3730-3738. [15]HE Z,ZUO W,KAN M,et al.Attgan:Facial Attribute Editing by Only Changing What You Want[J].IEEE Transactions on Image Processing,2019,28(11):5464-5478. [16]ANOKHIN I,DEMOCHKIN K,KHAKHULIN T,et al.Image Generators with Conditionally-independent Pixel Synthesis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14278-14287. [17]XIAO Z,KREIS K,VAHDAT A.Tackling the GenerativeLearning Trilemma with Denoising Diffusion Gans[J].arXiv:2112.07804,2021. [18]KARRAS T,AITTALA M,HELLSTEN J,et al.Training Ge-nerative Adversarial Networks with Limited Data[J].Advances in Neural Information Processing Systems,2020,33:12104-12114. [19]WOOD E,BALTRUAITIS T,HEWITT C,et al.Fake It Till You Make It:Face Analysis in the Wild Using Synthetic Data Alone[C]//Proceedings of the IEEE/CVF International Confe- rence on Computer Vision.2021:3681-3691. [20]HUDSON D A,ZITNICK L.Generative Adversarial Trans-formers[C]//International Conference on Machine Learning.PMLR,2021:4487-4499. [21]SUVOROV R,LOGACHEVA E,MASHIKHIN A,et al.Resolution-robust Large Mask Inpainting with Fourier Convolutions[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:2149-2159. [22]LIU D B.ChatGLM[EB/OL].https://chatglm.cn/main/alltoolsdetail?lang=zh. [23]SAHARIA C,CHAN W,CHANG H,et al.Palette:Image-to-image Diffusion Models[C]//ACM SIGGRAPH 2022 Conference Proceedings.2022:1-10. [24]SAUER A,CHITTA K,MüLLER J,et al.Projected Gans Converge Faster[J].Advances in Neural Information Processing Systems,2021,34:17480-17492. [25]BENIAGUEV D.Synthetic Faces High Quality(sfhq) Dataset[DB/OL].https://github.com/SelfishGene/SFHQ-dataset. [26]ROMBACH R,BlATTMANN A,LORENZ D,et al.High-resolution Image Synthesis with Latent Diffusion Models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10684-10695. [27]CHOI Y,CHOI M,KIM M,et al.Stargan:Unified GenerativeAdversarial Networks for Multi-Domain Image-to-image Translation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8789-8797. [28]WANG T Y,CHENG H,CHOW K P,et al.Deep Convolutional Pooling Transformer for Deepfake Detection[J].ACM Transactions on Multimedia Computing,Communications,and Applications,2023,19(6):1-20. [29]YANG X,LI Y,LYU S.ExposingDeep Fakes Using Inconsistent Head Poses[C]//2019 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2019).IEEE,2019:8261-8265. [30]KORSHUNOV P,MARCEL S.Deepfakes:A New Threat to Face Recognition? Assessment and Detection[J].arXiv:1812.08685,2018. [31]ZHOU P,HAN X,MORARIU V I,et al.Two-Stream Neural Networks for Tampered Face Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).IEEE,2017:1831-1839. [32]WANG R,MA L,JUEFEI-XU F,et al.Fakespotter:A Simple Baseline for Spotting Ai-synthesized Fake Faces[J].arXiv:1909.06122,2019. [33]LI Y,YANG X,SUN P,et al.Celeb-DF:A Large-scale Chal-lenging Dataset for Deepfake Forensics[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:3207-3216. [34]DOLHANSKY B,BITTON J,PFLAUM B,et al.TheDeepfake Detection Challenge(dfdc) Dataset[J].arXiv:2006.07397,2020. [35]VAN DER MAATEN L,HINTON G.Visualizing Data Using T-SNE[J].Journal of Machine Learning Research,2008,9(86):2579-2605. [36]KARRAS T,LAINE S,AILA T.A Style-based Generator Architecture for Generative Adversarial Networks[C]// Procee- dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4401-4410. [37]QIANY Y,YIN G J,SHENG L,et al.Thinking in Frequency:Face Forgery Detection by Mining Frequency-aware Clues[C]//European Conference on Computer Vision.Cham:Springer,2020:86-103. [38]LI X R,JI S L,WU C M,et al.Survey on Deepfakes and Detection Techniques[J].Journal of Software,2021,32(2):496-518. [39]XING H,LI M,Deepfake Video Detection based on 3D Convolutional Neural Networks[J].Computer Science,2021,48(7):86-92. [40]COCCOMINI D A,MESSINA N,GENNARO C,et al.Combining EfficientNet and Vision Transformers for Video Deepfake Detection[C]//Proceedings of the 21st International Conference on Image Analysis and Processing.2022:219-229. |
[1] | YU Yang, YUAN Jiabin, CAI Jiyuan, ZHA Keke, CHEN Zhangyu, DAI Jiawei, FENG Yuxiang. Deepfake Face Tampering Video Detection Method Based on Non-critical Masks and AttentionMechanism [J]. Computer Science, 2023, 50(11): 160-167. |
[2] | LIANG Haowei, WANG Shi, CAO Cungen. Study on Short Text Classification with Imperfect Labels [J]. Computer Science, 2023, 50(1): 185-193. |
[3] | SHI Da, LU Tian-liang, DU Yan-hui, ZHANG Jian-ling, BAO Yu-xuan. Generation Model of Gender-forged Face Image Based on Improved CycleGAN [J]. Computer Science, 2022, 49(2): 31-39. |
[4] | LI Ying, BIAN Shan, WANG Chun-tao, HUANG Qiong. Detection of Deepfakes Based on Dual-stream Network [J]. Computer Science, 2022, 49(11A): 220100106-9. |
[5] | BAO Yu-xuan, LU Tian-liang, DU Yan-hui, SHI Da. Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation [J]. Computer Science, 2021, 48(7): 77-85. |
[6] | XING Hao, LI Ming. Deepfake Video Detection Based on 3D Convolutional Neural Networks [J]. Computer Science, 2021, 48(7): 86-92. |
[7] | BAO Yu-xuan, LU Tian-liang, DU Yan-hui. Overview of Deepfake Video Detection Technology [J]. Computer Science, 2020, 47(9): 283-292. |
[8] | LI Bao-sheng, QIN Chuan-dong. Study on Electric Vehicle Price Prediction Based on PSO-SVM Multi-classification Method [J]. Computer Science, 2020, 47(11A): 421-424. |
[9] | CHEN Li-fang, CHEN Liang and LIU Bao-xiang. Research of SVM Multiclass Model Based on Granular Computing & Huffman Tree [J]. Computer Science, 2016, 43(1): 64-68. |
[10] | . Study on Acoustic Sources Identification Based on Multi-SVDD [J]. Computer Science, 2012, 39(11): 233-236. |
[11] | YIN Zhi-Wu ,HUANG Shang-Teng (Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240). [J]. Computer Science, 2008, 35(2): 138-139. |
|