Computer Science ›› 2025, Vol. 52 ›› Issue (1): 87-93.doi: 10.11896/jsjkx.240900064
• Technology Research and Application of Large Language Model • Previous Articles Next Articles
CHENG Zhiyu1, CHEN Xinglin2, WANG Jing3, ZHOU Zhongyuan4, ZHANG Zhizheng5,6
CLC Number:
[1]PAN S,LUO L,WANG Y,et al.Unifying large language mo-dels and knowledge graphs:A roadmap[J].arXiv.2306.08302,2023. [2]PENG H.Design and Implementation of Military KnowledgeQ&A System Based on Knowledge Graph [D].Beijing:Beijing University of Posts and Telecommunications,2022:25-45. [3]GUO A B.Research on Key Technologies and Systems of Intelligent Intelligence Q&A [D].Changsha:National University of Defense Technology,2021:8-11. [4]XU P K.Research on Key Technologies for Semantic Analysis of Questions in Military Knowledge Q&A [D].Changsha:National University of Defense Technology,2021:34-46. [5]FAN J J,MA H Q,LIU X L.Research on Military Knowledge Graph Q&A Intelligent Service for Open Source Intelligence in the Digital Intelligence Era [J/OL].Data Analysis and Know-ledge Discovery:1-15.[2024-06-30].http://kns.cnki.net/kcms/detail/10.1478.G2.20231026.1305.002.html. [6]LAN Y,HE G,JIANG J,et al.Complex knowledge base question answering:A survey[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(11):11196-11215. [7]HUANG L,YU W,MA W,et al.A survey on hallucination in large language models:Principles,taxonomy,challenges,and open questions[J].arXiv:2311.05232,2023. [8]TONMOY S M,ZAMAN S M,JAIN V,et al.A comprehensive survey of hallucination mitigation techniques in large language models[J].(arXiv:2401.01313,2024. [9]SCHLAG I,SUKHBAATAR S,CELIKYILMAZ A,et al.Large language model programs[J].arXiv:2305.05364,2023. [10]LEWIS P,PEREZ E,PIKTUS A,et al.Retrieval-augmentedgeneration for knowledge-intensive nlp tasks[J].Advances in Neural Information Processing Systems,2020,33:9459-9474. [11]GAO Y,XIONG Y,GAO X,et al.Retrieval-augmented generation for large language models:A survey[J].arXiv:2312.10997,2023. [12]NAKANO R,HILTON J,BALAJI S,et al.Webgpt:Browser-assisted question-answering with human feedback[J].arXiv:2112.09332,2021. [13]ASAI A,WU Z,WANG Y,et al.Self-rag:Learning to retrieve,generate,and critique through self-reflection[J].arXiv:2310.11511,2023. [14]RACKAUCKAS Z.Rag-fusion:a new take on retrieval-augmented generation[J].arXiv:2402.03367,2024. [15]PAWAR S,TONMOY S M,ZAMAN S M,et al.The What,Why,and How of Context Length Extension Techniques in Large Language Models--A Detailed Survey[J].arXiv:2401.07872,2024. [16]WANG X,SALMANI M,OMIDI P,et al.Beyond the limits:A survey of techniques to extend the context length in large language models[J].arXiv:2402.02244,2024. [17]GEBSER M,KAMINSKI R,KAUFMANN B,et al.Answer set solving in practice[M].Morgan and Claypool Publishers,2022. [18]LIU W,ZHOU P,ZHAO Z,et al.K-bert:Enabling languagerepresentation with knowledge graph[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:2901-2908. [19]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [20]TEAM G L M,ZENG A,XU B,et al.ChatGLM:A Family of Large Language Models from GLM-130B to GLM-4 All Tools[J].arXiv:2406.12793,2024. |
[1] | CHENG Jinfeng, JIANG Zongli. Dialogue Generation Model Integrating Emotional and Commonsense Knowledge [J]. Computer Science, 2025, 52(1): 307-314. |
[2] | ZENG Zefan, HU Xingchen, CHENG Qing, SI Yuehang, LIU Zhong. Survey of Research on Knowledge Graph Based on Pre-trained Language Models [J]. Computer Science, 2025, 52(1): 1-33. |
[3] | DUN Jingbo, LI Zhuo. Survey on Transmission Optimization Technologies for Federated Large Language Model Training [J]. Computer Science, 2025, 52(1): 42-55. |
[4] | LI Tingting, WANG Qi, WANG Jiakang, XU Yongjun. SWARM-LLM:An Unmanned Swarm Task Planning System Based on Large Language Models [J]. Computer Science, 2025, 52(1): 72-79. |
[5] | LIU Changcheng, SANG Lei, LI Wei, ZHANG Yiwen. Large Language Model Driven Multi-relational Knowledge Graph Completion Method [J]. Computer Science, 2025, 52(1): 94-101. |
[6] | NIU Guanglin, LIN Zhen. Survey of Knowledge Graph Representation Learning for Relation Feature Modeling [J]. Computer Science, 2024, 51(9): 182-195. |
[7] | CHEN Shanshan, YAO Subin. Study on Recommendation Algorithms Based on Knowledge Graph and Neighbor PerceptionAttention Mechanism [J]. Computer Science, 2024, 51(8): 313-323. |
[8] | LIU Yumeng, ZHAO Yijing, WANG Bicong, WANG Chao, ZHANG Baomin. Advances in SQL Intelligent Synthesis Technology [J]. Computer Science, 2024, 51(7): 40-48. |
[9] | ZHANG Hui, ZHANG Xiaoxiong, DING Kun, LIU Shanshan. Device Fault Inference and Prediction Method Based on Dynamic Graph Representation [J]. Computer Science, 2024, 51(7): 310-318. |
[10] | HE Jing, ZHAO Rui, ZHANG Hengshuo. Visual Bibliometric Analysis of Knowledge Graph [J]. Computer Science, 2024, 51(6A): 230500123-10. |
[11] | TANG Xin, SUN Yufei, WANG Yujue, SHI Min, ZHU Dengming. Three Layer Knowledge Graph Architecture for Industrial Digital Twins [J]. Computer Science, 2024, 51(6A): 230400153-6. |
[12] | ZHU Yuliang, LIU Juntao, RAO Ziyun, ZHANG Yi, CAO Wanhua. Knowledge Reasoning Model Combining HousE with Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600209-8. |
[13] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[14] | SUN Shounan, WANG Jingbin, WU Renfei, YOU Changkai, KE Xifan, HUANG Hao. TMGAT:Graph Attention Network with Type Matching Constraint [J]. Computer Science, 2024, 51(3): 235-243. |
[15] | ZHOU Honglin, SONG Huazhu, ZHANG Juan. Knowledge Graph Embedding Model with Entity Description on Cement Manufacturing Domain [J]. Computer Science, 2024, 51(3): 251-256. |
|