Computer Science ›› 2025, Vol. 52 ›› Issue (6): 346-354.doi: 10.11896/jsjkx.240900154
• Computer Network • Previous Articles Next Articles
ZHOU Kai, WANG Kai, ZHU Yuhang, PU Liming, LIU Shuxin, ZHOU Deqiang
CLC Number:
[1]CARRIÓN C.Kubernetes scheduling:Taxonomy,ongoing issues and challenges[J].ACM Computing Surveys,2022,55(7):1-37. [2]WU Y W,ZHANG Y,WANG T,et al.The Development ofContainer Technology from the Perspective of Docker Containers:A Systematic Literature Review Perspective[J].Journal of Software,2023,34(12):5527-5551. [3]HASSAN M,CUSTODE L L,YILDIRIM K S,et al.FedEdge:Federated Learning with Docker and Kubernetes for Scalable and Efficient Edge Computing[C]//Proceedings of the 2023 International Conference on Embedded Wireless Systems and Networks.New York:ACM,2023:339-344. [4]NICOLAESCU A C,MASTORAKIS S,PSARAS I.Store edge networked data(SEND):A data and performance driven edge storage framework[C]//IEEE INFOCOM 2021-IEEE Conference on Computer Communications.IEEE,2021:1-10. [5]SINGHAL S,ALI S,AWASTHY M,et al.Rock-hyrax:An energy efficient job scheduling using cluster of resources in cloud computing environment[J].Sustainable Computing:Informatics and Systems,2024,42:100985. [6]KATAL A,CHOUDHURY T,DAHIYA S.Energy optimizedcontainer placement for cloud data centers:a meta-heuristic approach[J].The Journal of Supercomputing,2024,80(1):98-140. [7]CHEN X,XIAO S.Multi-objective and parallel particle swarm optimization algorithm for container-based microservice scheduling[J].Sensors,2021,21(18):6212. [8]LIU B,LI J,LIN W,et al.K-PSO:An improved PSO-based container scheduling algorithm for big data applications[J].International Journal of Network Management,2021,31(2):e2092. [9]BOUVEYRON C,BRUNET-SAUMARD C.Model-based clustering of high-dimensional data:A review[J].Computational Statistics & Data Analysis,2014,71:52-78. [10]WANG Z,WANG P H,WANG B C,et al.GPU Shared Scheduling System Under Deep Learning Container Cloud Platform[J].Computer Science,2023,50(6):86-91. [11]SINGH N,HAMID Y,JUNEJA S,et al.Load balancing andservice discovery using Docker Swarm for microservice based big data applications[J].Journal of Cloud Computing,2023,12(1):4. [12]MUNISWAMY S,VIGNESH R.Joint optimization of load balancing and resource allocation in cloud environment using optimal container management strategy[J].Concurrency and Computation:Practice and Experience,2021,124:253-262. [13]AL RESHAN M S,SYED D,ISLAM N,et al.A fast converging and globally optimized approach for load balancing in cloud computing[J].IEEE Access,2023,11:11390-11404. [14]ZHU L,HUANG K,FU K,et al.A priority-aware scheduling framework for heterogeneous workloads in container-based cloud[J].Applied Intelligence,2023,53(12):15222-15245. [15]XIAO Z,LIU K,HU M,et al.DeepCTS:A Deep Reinforcement Learning Approach for AI Container Task Scheduling[C]//Proceedings of the 2024 3rd Asia Conference on Algorithms,Computing and Machine Learning.ACM,2024:342-347. [16]MAO Y,FU Y,ZHENG W,et al.Speculative container scheduling for deep learning applications in a kubernetes cluster[J].IEEE Systems Journal,2021,16(3):3770-3781. [17]XIE Y S,HUANG X H,CHEN N J.Self-balanced Scheduling Strategy for Container Cluster Based on Improved DQN Algorithm[J].Computer Science,2023,50(4):233-240. [18]CHEN Y,HE S,JIN X,et al.Resource utilization and cost optimization oriented container placement for edge computing in industrial internet[J].The Journal of Supercomputing,2023,79(4):3821-3849. [19]MOHAMMADZADEH A,MASDARI M,GHAREHCHO-POGH F S.Energy and cost-aware workflow scheduling in cloud computing data centers using a multi-objective optimization algorithm[J].Journal of Network and Systems Management,2021,29(3):31. [20]LIU R,YANG P,LYU H,et al.Multi-objective multi-factorial evolutionary algorithm for container placement[J].IEEE Transactions on Cloud Computing,2021,11(2):1430-1445. [21]ZHANG W,CHEN L,LUO J,et al.A two-stage container management in the cloud for optimizing the load balancing and migration cost[J].Future Generation Computer Systems,2022,135:303-314. [22]SHEGANAKU G,SCHULTE S,WAIBEL P,et al.Cost-effi-cient auto-scaling of container-based elastic processes[J].Future Generation Computer Systems,2023,138:296-312. [23]AGGARWAL A,DIMRI P,AGARWAL A,et al.Self adaptive fruit fly algorithm for multiple workflow scheduling in cloud computing environment[J].Kybernetes,2021,50(6):1704-1730. [24]SONG Y,LIANG W F,ZHAO J,et al.Cloud Resource Scheduling Performance of Water Wave Optimization Algorithm Improved by Artificial Bee Colony Algorithm[J].Journal of University of Jinan(Science and Technology),2023,37(4):472-477. [25]YAN J,HUANG Y,GUPTA A,et al.Energy-aware systems for real-time job scheduling in cloud data centers:A deep reinforcement learning approach[J].Computers and Electrical Engineering,2022,99:107688. [26]DENG L,WANG Z,SUN H,et al.A deep reinforcement learning-based optimization method for long-running applications container deployment[J].International Journal of Computers Communications & Control,2023,18(4):108-125. [27]TANG Z,LOU J,JIA W.Layer dependency-aware learningscheduling algorithms for containers in mobile edge computing[J].IEEE Transactions on Mobile Computing,2022,22(6):3444-3459. [28]AHMED M,SERAJ R,ISLAM S M S.The k-means algorithm:A comprehensive survey and performance evaluation[J].Electronics,2020,9(8):1295. [29]DO C B,BATZOGLOU S.What is the expectation maximization algorithm?[J].Nature Biotechnology,2008,26(8):897-899. [30]WAN H,WANG H,SCOTNEY B,et al.A novel gaussian mixture model for classification[C]//2019 IEEE International Conference on Systems,Man and Cybernetics(SMC).IEEE,2019:3298-3303. [31]LAI W K,WANG Y C,WEI S C.Delay-aware container scheduling in kubernetes[J].IEEE Internet of Things Journal,2023,10(13):11813-11824. |
[1] | ZHOU Danying, HUANG Tianhao, LIU Ruming. Research and Practice on Key Technologies for Serverless Computing [J]. Computer Science, 2025, 52(6A): 240700114-6. |
[2] | TAN Shiyi, WANG Huaqun. Remote Dynamic Data Integrity Checking Scheme for Multi-cloud and Multi-replica [J]. Computer Science, 2025, 52(5): 345-356. |
[3] | HUANG Chenxi, LI Jiahui, YAN Hui, ZHONG Ying, LU Yutong. Investigation on Load Balancing Strategies for Lattice Boltzmann Method with Local Grid Refinement [J]. Computer Science, 2025, 52(5): 101-108. |
[4] | ZHENG Longhai, XIAO Bohuai, YAO Zewei, CHEN Xing, MO Yuchang. Graph Reinforcement Learning Based Multi-edge Cooperative Load Balancing Method [J]. Computer Science, 2025, 52(3): 338-348. |
[5] | WANG Yijie, GAO Guoju, SUN Yu'e, HUANG He. Flow Cardinality Estimation Method Based on Distributed Sketch in SDN [J]. Computer Science, 2025, 52(2): 268-278. |
[6] | XU Donghong, LI Bin, QI Yong. Task Scheduling Strategy Based on Improved A2C Algorithm for Cloud Data Center [J]. Computer Science, 2025, 52(2): 310-322. |
[7] | LI Zhi, LIN Sen, ZHANG Qiang. Edge Cloud Computing Approach for Intelligent Fault Detection in Rail Transit [J]. Computer Science, 2024, 51(9): 331-337. |
[8] | TANG Xin, DI Nongyu, YANG Hao, LIU Xin. Optimum Proposal to secGear Based on Skiplist [J]. Computer Science, 2024, 51(6A): 230700030-5. |
[9] | WANG Tian, SHEN Wei, ZHANG Gongxuan, XU Linli, WANG Zhen, YUN Yu. Soft Real-time Cloud Service Request Scheduling and Multiserver System Configuration for ProfitOptimization [J]. Computer Science, 2024, 51(6A): 230900099-10. |
[10] | LIU Daoqing, HU Hongchao, HUO Shumin. N-variant Architecture for Container Runtime Security Threats [J]. Computer Science, 2024, 51(6): 399-408. |
[11] | HAN Yujie, XU Zhijie, YANG Dingyu, HUANG Bo, GUO Jianmei. CDES:Data-driven Efficiency Evaluation Methodology for Cloud Database [J]. Computer Science, 2024, 51(6): 111-117. |
[12] | HE Yuang, WANG Xin, SHEN Lingzhen. Diversified Top-k Pattern Mining on Large Graphs [J]. Computer Science, 2024, 51(5): 70-84. |
[13] | LIAO Qihua, NIE Kai, HAN Lin, CHEN Mengyao, XIE Wenbing. Tile Selection Algorithm Based on Data Locality [J]. Computer Science, 2024, 51(12): 100-109. |
[14] | YANG Zheming, ZUO Lulu, JI Wen. Joint Optimization Method for Node Deployment and Resource Allocation Based on End-EdgeCollaboration [J]. Computer Science, 2024, 51(11A): 240200010-7. |
[15] | CHEN Juan, WANG Yang, WU Zongling, CHEN Peng, ZHANG Fengchun , HAO Junfeng. Cloud-Edge Collaborative Task Transfer and Resource Reallocation Optimization Based on Deep Reinforcement Learning [J]. Computer Science, 2024, 51(11A): 231100170-10. |
|