Computer Science ›› 2025, Vol. 52 ›› Issue (12): 260-270.doi: 10.11896/jsjkx.241100081
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Xiaoming, QIU Jingjing, WANG Huiyong
CLC Number:
| [1]HUANG P,ZHANG M,ZHONG Z,et al.Representation Lear-ning for Entity Alignment in Knowledge Graph:A Design Space Exploration[C]//2024 IEEE 40th International Confe-rence on Data Engineering(ICDE).IEEE,2024:3462-3475. [2]ZHANG T C,TIAN X,SUN X H,et al.Overview on Know-ledge Graph Embedding Technology Research[J].Journal of Software,2023,34(1):277-311. [3]ZHU B,WANG R,WANG J,et al.A survey:knowledge graph entity alignment research based on graph embedding[J].Artificial Intelligence Review,2024,57(9):1-58. [4]VAN DER VELDEN B H M,KUIJF H J,GILHUIJS K G A,et al.Explainable artificial intelligence(XAI) in deep learning-based medical image analysis[J].Medical Image Analysis,2022,79:102470. [5]CHOWDHURY T,RAHIMI R,ALLAN J.Equi-explanationmaps:concise and informative global summary explanations[C]//Proceedings of the 2022 ACM Conference on Fairness,Accountability,and Transparency.2022:464-472. [6]LAMPRIDIS O,GUIDOTTI R,RUGGIERI S.Explaining sentiment classification with synthetic exemplars and counter-exemplars[C]//International Conference on Discovery Science.Cham:Springer,2020:357-373. [7]DOU H,ZHANG L M,HAN F,et al.Survey on Convolutional Neural Network Interpretability[J].Journal of Software,2024,35(1):159-184. [8]FAN Y,YAO Y,JOE W C.Gcn-se:Attention as explainability for node classification in dynamic graphs[C]//2021 IEEE International Conference on Data Mining(ICDM).IEEE,2021:1060-1065. [9]LI X,SAÚDE J.Explain graph neural networks to understand weighted graph features in node classification[C]//International Cross-Domain Conference for Machine Learning and Knowledge Extraction.Cham:Springer,2020:57-76. [10]ROSSI A,FIRMANI D,MERIALDO P,et al.Explaining linkprediction systems based on knowledge graph embeddings[C]//Proceedings of the 2022 International Conference on Management of Data.2022:2062-2075. [11]CHEN M,TIAN Y,YANG M,et al.Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence(IJCAI).2017:1511-1517. [12]SUN Z,HU W,ZHANG Q,et al.Bootstrapping entity alignment with knowledge graph embedding[C]//IJCAI.2018. [13]WANG Z,LV Q,LAN X,et al.Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:349-357. [14]MAO X,WANG W,WU Y,et al.Boosting the speed of entityalignment 10×:Dual attention matching network with norma-lized hard sample mining[C]//Proceedings of the Web Confe-rence 2021.2021:821-832. [15]MAO X,WANG W,WU Y,et al.From alignment to assignment:Frustratingly simple unsupervised entity alignment[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.2021:2843-2853. [16]JI G S,ZHU Y C,WANG Y,et al.Multi-depth joint entityalignment based on textualinformationmulti-depth joint entity alignment based on textual information[J].Applied Intelligence,2023,51:8896-8912. [17]MAO X,WANG W,WU Y,et al.LightEA:A Scalable,Robust,and Interpretable Entity Alignment Framework via Three-view Label Propagation[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:825-838. [18]LUO Y,CHEN Z,GUO L,et al.ASGEA:Exploiting LogicRules from Align-Subgraphs for Entity Alignment[J].arXiv:2402.11000,2024. [19]XU C,CHENG J,ZHANG F.P-NAL:an Effective and Interpretable Entity Alignment Method[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2024:13752-13772. [20]TRISEDYA B D,SALIM F D,CHAN J,et al.i-Align:an interprtable knowledge graph alignment model[J].Data Mining and Knowledge Discovery,2023,37(6):2494-2516. [21]YING Z,BOURGEOIS D,YOU J,et al.Gnnexplainer:Generating explanations for graph neural networks[C]//Proceedings of the Conference on Neural Information Processing Systems.2019:9244-9255. [22]LUO D,CHENG W,XU D,et al.Parameterized explainer for graph neural network[J].Advances in Neural Information Processing Systems,2020,33:19620-19631. [23]YUAN H,YU H,WANG J,et al.On explainability of graph neural networks via subgraph explorations[C]//International Conference on Machine Learning.PMLR,2021:12241-12252. [24]PEZESHKPOUR P,TIAN Y,SINGH S.Investigating robust-ness and interpretability of link prediction via adversarial modifications[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computa tional Linguistics:Human Language Technologies.2019:3336-3347. [25]ZHAO D,WAN G,ZHAN Y,et al.KE-X:Towards subgraph explanations of knowledge graph embedding based on know-ledge information gain[J].Knowledge-Based Systems,2023,278:110772. [26]RIBEIRO M T,SINGH S,GUESTRIN C.“Why shouldi trust you?” Explaining the predictions of any classifier[C]//Procee-dings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1135-1144. [27]LUNDBERG S M,LEE S I.Aunified approach to interpreting model predictions[J].Advances in Neural Information Proces-sing Systems,2017,30:4768-4777. [28]TIAN X,SUN Z,HU W.Generating Explanations to Understand and Repair Embedding-based Entity Alignment[C]//2024 IEEE 40th International Conference on Data Engineering(ICDE).IEEE,2024:2205-2217. [29]XIN K,SUN Z,HUA W,et al.Informed multi-context entity alignment[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining.2022:1197-1205. [30]ČEBIRIĆ Š,GOASDOUÉ F,KONDYLAKIS H,et al.Summarizing semantic graphs:a survey[J].The VLDB Journal,2019,28:295-327. [31]SUN Z,HU W,LI C.Cross-lingual entity alignment via joint attribute-preserving embedding[C]//International Semantic Web Conference.Cham:Springer,2017:628-644. [32]ZHANG R,TRISEDYA B D,LI M,et al.A benchmark andcomprehensive survey on knowledge graph entity alignment via representation learning[J].The VLDB Journal,2022,31(5):1143-1168. [33]ZENG K,LI C,HOU L,et al.A comprehensive surveyof entity alignment for knowledge graphs[J].AI Open,2021,2:1-13. [34]POPE P E,KOLOURI S,ROSTAMI M,et al.Explainabilitymethods for graph convolutional neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:10772-10781. |
| [1] | LI Zhikang, DENG Yichen, YU Dunhui, XIAO Kui. Relationship and Attribute Aware Entity Alignment Based on Variant-attention [J]. Computer Science, 2025, 52(11): 230-236. |
| [2] | CHEN Fuqiang, KOU Jiamin, SU Limin, LI Ke. Multi-information Optimized Entity Alignment Model Based on Graph Neural Network [J]. Computer Science, 2023, 50(3): 34-41. |
| [3] | CHI Tang, CHE Chao. Entity Alignment Method Combining Iterative Relationship Graph Matching and Attribute Semantic Embedding [J]. Computer Science, 2023, 50(11A): 230200041-6. |
| [4] | CHAO Le-men, WANG Rui. Data Science Platform:Features,Technologies and Trends [J]. Computer Science, 2021, 48(8): 1-12. |
| [5] | YANG Ru-han, DAI Yi-ru, WANG Jian, DONG Jin. Humans-Cyber-Physical Ontology Fusion of Industry Based on Representation Learning [J]. Computer Science, 2021, 48(5): 190-196. |
| [6] | WANG Zhi-juan and LI Fu-xian. Survey on Cross-language Named Entity Translation Pairs Extraction [J]. Computer Science, 2017, 44(Z6): 14-18. |
|
||